Skip to main content
Log in

An Expansion of Age Constraints for Microbial Clades that Lack a Conventional Fossil Record Using Phylogenomic Dating

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Most microbial taxa lack a conventional microfossil or biomarker record, and so we currently have little information regarding how old most microbial clades and their associated traits are. Building on the previously published oxygen age constraint, two new age constraints are proposed based on the ability of microbial clades to metabolize chitin and aromatic compounds derived from lignin. Using the archaeal domain of life as a test case, phylogenetic analyses, along with published metabolic and genetic data, showed that members of the Halobacteriales and Thermococcales are able to metabolize chitin. Ancestral state reconstruction combined with phylogenetic analysis of the genes underlying chitin degradation predicted that the ancestors of these two groups were also likely able to metabolize chitin or chitin-related compounds. These two clades were therefore assigned a maximum age of 1.0 Ga (when chitin likely first appeared). Similar analyses also predicted that the ancestor to the Sulfolobus solfataricusSulfolobus islandicus clade was able to metabolize phenol using catechol dioxygenase, so this clade was assigned a maximum age of 475 Ma. Inferred ages of archaeal clades using relaxed molecular clocks with the new age constraints were consistent with those inferred with the oxygen age constraints. This work expands our current toolkit to include Paleoproterozoic, Neoproterozoic, and Paleozoic age constraints, and should aid in our ability to phylogenetically reconstruct the antiquity of a wide array of microbial clades and their associated morphological and biogeochemical traits, spanning deep geologic time. Such hypotheses—although built upon evolutionary inferences—are fundamentally testable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ASR:

Ancestral character state reconstruction

Ga:

Giga-anna (billion years) before present

Ma:

Mega-anna (million years) before present

MB:

Mr. Bayes, Bayesian method of phylogenetic reconstruction

MP:

Maximum parsimony method of phylogenetic reconstruction

RMC:

Relaxed molecular clock

References

  • Agarry SE, Durojaiye AO, Solomon BO (2008) Microbial degradation of phenols: a review. Int J Environ Pollut 32:12–28

    Article  CAS  Google Scholar 

  • Andersson JO, Hirt RP, Foster PG, Roger AJ (2006) Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evol Biol 6:27

    Article  PubMed  Google Scholar 

  • Badreddine I, Lafitte C, Heux L, Skandalis N, Spanou Z, Martinez Y, Esquerré-Tugayé M-T, Bulone V, Dumas B, Bottin A (2008) Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches. Eukaryot Cell 7:1980–1993

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–273

    Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    Article  PubMed  CAS  Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  PubMed  CAS  Google Scholar 

  • Blank CE (2009a) Phylogenomic dating—a method for constraining the age of microbial taxa that lack a conventional fossil record. Astrobiology 9:173–192

    Article  PubMed  CAS  Google Scholar 

  • Blank CE (2009b) Phylogenomic dating—the relative antiquity of archaeal metabolic and physiological traits. Astrobiology 9:193–220

    Article  PubMed  CAS  Google Scholar 

  • Blank CE (2009c) Not so old Archaea—the antiquity of biogeochemical processes in the archaeal domain of life. Geobiology 7:495–514

    Article  PubMed  CAS  Google Scholar 

  • Blank CE, Sánchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the Cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G (2005) Unusual reactions involved in anaerobic metabolism of phenolic compounds. Biol Chem 386:989–997

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Book  Google Scholar 

  • Campos-Gónora E, Ebert F, Willhoeft W, Said-Fernández S, Tannich E (2004) Characterization of chitin synthases from Entamoeba. Protist 155:323–330

    Article  Google Scholar 

  • Castenholz RW (1988) Thermophilic cyanobacteria: special problems. Methods Enzymol 167:96–100

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE-Y (2003) Phylogeny of Choanozoa, Apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 56:540–563

    Article  PubMed  CAS  Google Scholar 

  • Chae JC, Kim E, Bini E, Zystra GJ (2007) Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2. Biochem Biophy Res Commun 357:815–819

    Article  CAS  Google Scholar 

  • Coronado JE, Mneimneh S, Epstein SL, Qiu W-G, Lipke PN (2007) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6:2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Das S, Gillin FD (1991) Chitin synthase in encysting Entamoeba invadens. Biochem J 280:641–647

    PubMed  CAS  Google Scholar 

  • Das S, Van Dellen K, Bulik D, Magnelli P, Cui J, Head J, Robbins PW, Samuelson J (2006) The cyst wall of Entamoeba invadens contains chitosan (deacetylated chitin). Mol Biochem Parasitol 148:86–92

    Article  PubMed  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Curr Biol 3:853–859

    CAS  Google Scholar 

  • Delwiche CF, Graham LE, Thomson N (1989) Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245:399–401

    Article  PubMed  CAS  Google Scholar 

  • Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    Article  PubMed  CAS  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  PubMed  CAS  Google Scholar 

  • Dutilh BE, van Noort V, van der Heijden RT, Boekhout T, Snel B, Huynen MA (2007) Assessment of phylogenomic and orthology approaches for phylogenetic inference. Bioinformatics 23(7):815–824

    Article  PubMed  CAS  Google Scholar 

  • Dutkiewicz A, Volk H, Ridley J, George S (2003) Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology 31:981–984

    Article  CAS  Google Scholar 

  • Erickson M, Miksche GE (1974) On the occurrence of lignin or polyphenols in some mosses and liverworts. Phytochemistry 13:2295–2299

    Article  CAS  Google Scholar 

  • Espiñeira JM, Nono Uzal E, Gómex Ros LV, Carrión JS, Merino F, Ros Barceló A, Pomar F (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68

    Article  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (2008) Primary production of the biosphere: integrating terrestrial and oceanic compartments. Science 281:237–240

    Article  Google Scholar 

  • Fuller MS, Clay RP (1993) Observations of Gonapodya in pure culture: growth, development and cell wall characterization. Mycologia 85:38–45

    Article  Google Scholar 

  • Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128

    Article  PubMed  CAS  Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430

    CAS  Google Scholar 

  • Gunnison D, Alexander M (1975) Basis for the resistance of several algae to microbial decomposition. Appl Microbiol 29:729–738

    PubMed  CAS  Google Scholar 

  • Guo D-M, Ran J-H, Wang X-Q (2010) Evolution of the cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of bona fide CAD. J Mol Evol 71:202–218

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM, Des Marais DJ, Lambert ID, Strauss H, Summons RE (1992) Proterozoic biochemistry. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, New York, pp 81–134

    Chapter  Google Scholar 

  • Hinkle G, Morrison HG, Sogin ML (1997) Genes coding for reverse transcriptase, DNA-directed RNA polymerase, and chitin synthase from the microsporidian Spraguea lophii. Biol Bull 193:250–251

    PubMed  CAS  Google Scholar 

  • Huber R, Stöhr J, Hohenhaus S, Rachel R, Burggraf S, Jannasch HW, Stetter KO (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51

    Article  PubMed  CAS  Google Scholar 

  • Imanaka T, Fukui T, Fujiwara S (2001) Chitinase from Thermococcus kodakaraensis KOD1. Methods Enzymol 330:319–329

    Article  PubMed  CAS  Google Scholar 

  • Izzo V, Notomista E, Picardi A, Pennacchio F, Di Donato A (2005) The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol. Res Microbiol 156:677–689

    Article  PubMed  CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Jockovic N, Andrade PB, Valentao P, Sabovljevic M (2008) HPLC-DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. J Serbian Chem Soc 73:1161–1167

    Article  CAS  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  PubMed  CAS  Google Scholar 

  • Kakhki AM, Amoozegar MA, Khaledi EM (2011) Diversity of hydrolytic enzymes in haloarchaeal strains isolated from salt lake. Int J Environ Sci Technol 8:705–714

    CAS  Google Scholar 

  • Karr CD, Jarroll EL (2004) Cyst wall synthase: N-acetylgalactosaminyltransferase activity is induced to form the novel N-acetylgalactosamine polysaccharide in the Giardia cyst wall. Microbiology SGM 150:1237–1243

    Article  CAS  Google Scholar 

  • Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122

    Article  PubMed  CAS  Google Scholar 

  • Klejdus B, Kopechy J, Benesová L, Vacek J (2009) Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A 1216:763–771

    Article  PubMed  CAS  Google Scholar 

  • Kneipp LF, Andrade AFB, de Souza W, Angluster J, Alviano CS, Travassos LR (1998) Trichomonas vaginalis and Tritrichomonas foetus: expression of chitin at the cell surface. Exp Parasitol 89:195–204

    Article  PubMed  CAS  Google Scholar 

  • Kovácik J, Klejdus B, Hedbavny J, Backor M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178:307–311

    Article  Google Scholar 

  • LeCleir GR, Buchan A, Hollibaugh JT (2004) Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl Environ Microbiol 70:6977–6983

    Article  PubMed  CAS  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: Occurrence, biogenesis and degradation. Ann Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  Google Scholar 

  • Li C, Peng P, Sheng G, Fu J, Yan Y (2003) A molecular and isotopic geochemical study of Meso- to Neoproterozoic (1.73–0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Res 125:337–356

    Article  CAS  Google Scholar 

  • Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K (2008) Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Sys Evol 270:257–272

    Article  CAS  Google Scholar 

  • Linder M, Winiecka-Krusnell J, Linder E (2002) Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in Protozoa. Appl Environ Microbiol 68:2503–2508

    Article  PubMed  CAS  Google Scholar 

  • Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868

    Article  PubMed  CAS  Google Scholar 

  • Logan GA, Hinman MC, Walter MR, Summons RE (2001) Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia. Geochim Cosmochim Acta 65:2317–2336

    Article  CAS  Google Scholar 

  • Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    Article  PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73. www.mesquite.project.org

  • Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC et al (2010) Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat Geosci 3:653–659

    Article  CAS  Google Scholar 

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175

    Article  PubMed  CAS  Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Ann Rev Microbiol 56:315–344

    Article  CAS  Google Scholar 

  • Minge MA, Silberman JD, Orr RJS, Cavalier-Smith T, Shalchian-Tabrizi K, Burki F, Skjæveland Å, Jakobsen KS (2009) Evolutionary position of breviate amoebae and the primary eukaryote divergence. Proc R Soc Lond B 276:597–604

    Article  CAS  Google Scholar 

  • Moliner C, Fournier P-E, Raoult D (2010) Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34:281–294

    Article  CAS  Google Scholar 

  • Nakamura T, Mine S, Hagihara Y, Ishikawa K, Uegaki K (2007) Structure of the catalytic domain of the hyperthermophilic chitinase from Pyrococcus furiosus. Acta Crystallogr F 63:7–11

    Article  Google Scholar 

  • Neaman A, Chorover J, Brantley SL (2005) Implications of the evolution of organic acid moieties for basalt weathering over geological time. Am J Sci 305:147–185

    Article  CAS  Google Scholar 

  • Peterson DJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc Lond B 363:1435–1443

    Article  Google Scholar 

  • Rambaut A (2007) Sequence Alignment Editor Se-Al v2.0a11. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh

    Google Scholar 

  • Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C et al (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with tree fungi. Mol Plant Microbe Interact 18:229–243

    Article  PubMed  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10:225–243

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, González-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 25:664–672

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3(3):145–165

    Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    PubMed  CAS  Google Scholar 

  • Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302. http://loco.biosci.arizona.edu/r8s/

    Google Scholar 

  • Shimodaira H, Hasegawa M (2001) CONSEL: For assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247. http://www.is.titech.ac.jp/~shimo/prog/consel/

    Google Scholar 

  • Siddiqui R, Khan NA, Jarroll EL (2009) The cyst wall carbohydrate composition of Balamuthia mandrillaris. Parisitol Res 104:1439–1443

    Article  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    Article  Google Scholar 

  • Spanggaard B, Skouboe P, Rossen L, Taylor JW (1996) Phylogenetic relationships of the intercellular fish pathogen Ichthyophonus hoferi and fungi, choanoflagellates and the rosette agent. Mar Biol 126:109–115

    Article  CAS  Google Scholar 

  • Sperling EA, Robinson JM, Pisani D, Peterson KJ (2010) Where’s the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8:24–36

    Article  PubMed  CAS  Google Scholar 

  • Steemans P, Le Hérissé A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH (2009) Origin and radiation of the earliest vascular land plants. Science 324:353

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2001) PAUP*. Phylogenetic analysis using parsimony (* and other methods). versions 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tanaka T, Fukui T, Atomi H, Imanaka T (2003) Characterization of an exo-β-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:5175–5181

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T (2004) Concerted action of diacetylchitobiose deacetylase and exo-β-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 279:30021–30027

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Takahashi F, Fukui T, Fujiwara S, Atomi H, Imanaka T (2005) Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J Bacteriol 187:7038–7044

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Edgcomb V, Rivers AR, Thompson JR, de Vera Gomez A, Molyneaux SJ, Wirsen CO (2009) A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 13:905–915

    Article  PubMed  Google Scholar 

  • Theriot EC, Cannone JJ, Gutell RR, Alverson AJ (2009) The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. Eur J Phycol 44:277–290

    Article  PubMed  CAS  Google Scholar 

  • Thomas V, Greub G (2010) Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbors. Intervirology 53:254–267

    Article  PubMed  Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurrence—a new approach to oil and gas exploration. Springer, New York

    Google Scholar 

  • Van Dellen KL, Bulik DA, Specht CA, Robbins PW, Samuelson JC (2006) Heterologous expression of an Entamoeba histolytica chitin synthase in Saccharomyces cerevisiae. Eukaryot Cell 5:203–206

    Article  PubMed  Google Scholar 

  • Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB, Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci USA 104:14260–14265

    Article  PubMed  CAS  Google Scholar 

  • Waldeck J, Meyer-Rammes H, Wieland S, Freesche J, Maurer KH, Meinhardt F (2007) Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. J Biotechnol 130:124–132

    Article  PubMed  CAS  Google Scholar 

  • Ward HD, Alroy J, Lev BI, Keusch GT, Pereria MEA (1985) Identification of chitin as a structural component of Giardia cysts. Infect Immun 49:629–634

    PubMed  CAS  Google Scholar 

  • Wellman CH, Osterloff PL, Mohluddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Sawyer J, Hatcher PG, Lerch HE III (1989) 1,3,5-Hydroxybenzene structures in mosses. Phytochemistry 28:1395–1400

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X et al (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics 10(suppl 11):S3

    Article  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. http://abacus.gene.ucl.ac.uk/software/paml.html

    Google Scholar 

  • Yoshinobu H, Motosuke S, Keita O, Rie Y, Kimiko E, Toshiaki F, Satoshi N (2006) Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chitin Chitosan Res 12:201

    Google Scholar 

  • Zamani A, Jeihanipour A, Edebo L, Niklasson C, Taherzadeh MJ (2008) Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. J Agric Food Chem 56:8314–8318

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Reysenbach A-L (2001) Class IV. Thermococci. In: Boone DR, Catenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn., vol 1. pp 341–348

  • Zillig W, Holz I, Janekovic D, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge helpful comments by two anonymous reviewers as well as support provided by Nancy Hinman and Bill Woessner. Additional assistance and inspiration came from Robin Brigmon, Michael Ceballos, Robert Kelly, Heiko Langner, Lindsay MacKenzie, Julie Maupin-Furlow, Brent Mishler, Penny Morris-Smith, and James Staub. Portions of this work were funded by a research initiation grant from the NASA Montana Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrine E. Blank.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, C.E. An Expansion of Age Constraints for Microbial Clades that Lack a Conventional Fossil Record Using Phylogenomic Dating. J Mol Evol 73, 188–208 (2011). https://doi.org/10.1007/s00239-011-9467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9467-y

Keywords