Skip to main content
Log in

The Last Universal Common Ancestor (LUCA) and the Ancestors of Archaea and Bacteria were Progenotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The tRNA split genes of Nanoarchaeum equitans and the Met-tRNAfMet → fMet-tRNAfMet pathway, identifiable as ancestral traits, and the late appearance of DNA are used to understand the evolutionary stage at which the progenote → genote transition took place. The arguments are such as to impose that not only was the last universal common ancestor (LUCA) a progenote, but the ancestors of Archaea and Bacteria were too. Therefore, the progenote → genote transition took place in a very advanced stage of the evolution of the tree of life, and only when the ancestors of Archaea and Bacteria were already defined. These conclusions are in disagreement with commonly held beliefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aravind L, Walker DR, Koonin E (1999) Conserved domains in DNA repair proteins and evolution of DNA repair systems. Nucl Acid Res 2:1223–1242

    Article  Google Scholar 

  • Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last universal common ancetor of the three major cell donains. Annu Rev Ecol Evol Syst 8:361–379

    Article  Google Scholar 

  • Csurös M, Miklós I (2009) Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol Biol Evol 26:2087–2095

    Article  PubMed  Google Scholar 

  • Danchin A (1989) Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol 54:81–86

    Article  CAS  PubMed  Google Scholar 

  • Darnell JE Jr (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202:1250–1260

    Article  Google Scholar 

  • de Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson Publishers Carolina Biological Supply Company, Burlington

    Google Scholar 

  • Delaye L, Becerra A, Lazcano A (2002) The nature of the last common ancestor. In: de Pouplana LR (ed) The genetic code and the origin of life. Landes Bioscience, Georgetown

    Google Scholar 

  • Delaye L, Becerra A, Lazcano A (2005) The universal common ancestor: what’s in a name? Orig Life Evol Biosph 35:537–554

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (1992) On the origin of the transfer RNA molecule. J Theor Biol 159:199–214

    Article  PubMed  Google Scholar 

  • Di Giulio M (1995) Was it an ancient gene codifying for a hairpin RNA that by means of direct duplication gave rise to the primitive tRNA molecule? J Theor Biol 177:95–101

    Article  PubMed  Google Scholar 

  • Di Giulio M (1999a) The non-monophyletic origin of tRNA molecule. J Theor Biol 197:403–414

    Article  PubMed  Google Scholar 

  • Di Giulio M (1999b) The coevolution theory of the origin of the genetic code. J Mol Evol 48:253–254

    Article  PubMed  Google Scholar 

  • Di Giulio M (2000) The universal ancestor lived in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213

    Article  PubMed  Google Scholar 

  • Di Giulio M (2001) The non-universality of the genetic code: the universal ancestor was a progenote. J Theor Biol 209:345–349

    Article  PubMed  Google Scholar 

  • Di Giulio M (2002) Genetic code origin: are the pathways of the type Glu-tRNAGln_Gln-tRNAGln molecular fossils or not? J Mol Evol 55:616–622

    Article  PubMed  Google Scholar 

  • Di Giulio M (2004) The origin of the tRNA molecule: implications for the origin of protein synthesis. J Theor Biol 226:89–93

    Article  PubMed  Google Scholar 

  • Di Giulio M (2006a) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA). J Theor Biol 240:343–352

    Article  PubMed  Google Scholar 

  • Di Giulio M (2006b) Nanoarchaeum equitans is a living fossil. J Theor Biol 242:257–260

    Article  PubMed  Google Scholar 

  • Di Giulio M (2007) The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 401:108–113

    Article  PubMed  Google Scholar 

  • Di Giulio M (2008a) Permuted tRNA genes of Cyanidioschyzon merolae the origin of the tRNA molecule and the root of the Eukarya domain. J Theor Biol 253:587–592

    Article  PubMed  Google Scholar 

  • Di Giulio M (2008b) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:37

    Article  PubMed  Google Scholar 

  • Di Giulio M (2008c) Split genes ancestral genes. In: Wong JT-F, Lazcano A (eds) Prebiotic evolution and astrobiology. Landes Bioscience, Austin, pp 106–109

    Google Scholar 

  • Di Giulio M (2008d) The origin of genes could be polyphyletic. Gene 426:39–46

    Article  PubMed  Google Scholar 

  • Di Giulio M (2009a) Formal proof that the split genes of tRNAs of Nanoarchaeum equitans are an ancestral character. J Mol Evol 5:505–511

    Article  Google Scholar 

  • Di Giulio M (2009b) A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J Mol Evol 1:1–9

    Article  Google Scholar 

  • Di Giulio M (2010) Biological evidence against the pamspermia theory. J Theor Biol 266:569–572

    Article  PubMed  Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582

    Article  Google Scholar 

  • Doolittle WF, Brown JR (1994) Tempo mode the progenote and the universal root. Proc Natl Acad Sci USA 91:6721–6728

    Article  CAS  PubMed  Google Scholar 

  • Edwards MR (1996) Metabolite channeling in the origin of life. J Theor Biol 179:313–322

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2005) The two ages of the RNA world and the transition to the DNA world: a story of viruses and cells. Biochimie 87:793–803

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci USA 103:3669–3674

    Article  CAS  PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF (1999) Do proteins predate DNA? Science 286:690–692

    Article  CAS  PubMed  Google Scholar 

  • Fujishima K, Sugahara J, Tomita M, Kanai A (2008) Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5′ and 3′ tRNA halves. PLoS ONE 3:e1622

    Article  PubMed  Google Scholar 

  • Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A, Tomita M, Kanai A (2009) Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci USA 96:2683–2687

    Article  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W, de Souza SJ, Long M (1997) Origin of genes. Proc Natl Acad Sci USA 94:7698–7703

    Article  CAS  PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29

    Article  PubMed  Google Scholar 

  • Gogarten JP (1995) The early evolution of cellular life. Trends Ecol Evol 10:147–151

    Article  CAS  PubMed  Google Scholar 

  • Guarlerzi CO, Pon CL (1990) Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881–5889

    Article  Google Scholar 

  • Hoenigsberg H (2003) Evolution without speciation but with selection: LUCA the last universal common ancestor in Gilbert’s RNA world. Genet Mol Res 2:366–375

    CAS  PubMed  Google Scholar 

  • Kandler O (1994) The early diversification of life. In: Bengtson S (ed) Early life on earth, nobel symposium no 84. Columbia University Press, New York, pp 152–60

  • Koonin EV (2009) On the origin of cells and viruses: primordial virus world scenario. Ann N Y Acad Sci 1178:47–64

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208

    Article  CAS  PubMed  Google Scholar 

  • Kyrpides NC, Woese CR (1998a) Universally conserved translation initiation factors. Proc Natl Acad Sci USA 95:224–228

    Article  CAS  PubMed  Google Scholar 

  • Kyrpides NC, Woese CR (1998b) Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B α-β-γ subunit families. Proc Natl Acad Sci USA 95:3726–3730

    Article  CAS  PubMed  Google Scholar 

  • Lazcano A (1995) Cellular evolution during the early Archean: what happened between the progenote and the cenancestor? Microbiol SEM 11:185–198

    CAS  Google Scholar 

  • Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucl Acids Res 27:3389–3401

    Article  CAS  PubMed  Google Scholar 

  • Marcker KA, Sanger F (1964) N-formylmethionyls RNA. J Mol Biol 8:835–840

    Article  CAS  PubMed  Google Scholar 

  • Mat WK, Xue H, Wong JT (2008) The genomics of LUCA. Front Biosci 3:5605–5613

    Article  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93:10268–10273

    Article  CAS  PubMed  Google Scholar 

  • Nagaswamy U, Fox GE (2003) RNA ligation and the origin of tRNA. Orig Life Evol Biosph 3:199–209

    Article  Google Scholar 

  • Ouzounis C, Kyrpides N (1996) The emergence of major cellular processes in evolution. FEBS Lett 390:119–123

    Article  CAS  PubMed  Google Scholar 

  • Ouzounis CA, Kunin V, Darzentas N, Goldovsky L (2006) A minimal estimate for the gene content of the last universal common ancestor—exobiology from a terrestrial perspective. Res Microbiol 57:57–68

    Article  Google Scholar 

  • Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236:747–771

    Article  CAS  PubMed  Google Scholar 

  • Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: clues that the Last Universal Common Ancestor (LUCA) possessed an RNA genome. Mol Biol Evol 221:444–1455

    Google Scholar 

  • Popper KR, Wachtershauser G (1990) Progenote or protogenote? Science 250:1070

    Google Scholar 

  • Rajbhandary UL (1994) Initiator transfer RNAs. J Bacteriol 176:547–552

    CAS  PubMed  Google Scholar 

  • Randau L, Munch R, Hohn M, Jahn D, Soll D (2005) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433:537–541

    Article  CAS  PubMed  Google Scholar 

  • Ranea JA, Sillero A, Thornton JM, Orengo CA (2006) Protein superfamily evolution and the last universal common ancestor (LUCA). J Mol Evol 3:813–825

    Google Scholar 

  • Tuller T, Birin H, Gophna U, Kupiec M, Ruppin E (2010) Reconstructing ancestral gene content by coevolution. Genome Res 20:122–132

    Article  CAS  PubMed  Google Scholar 

  • Wachtershauser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    CAS  PubMed  Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution Microbiol. Res 51:221–271

    CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Google Scholar 

  • Woese CR, Fox GE (1977) The concept of cellular evolution. J Mol Evol 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Wheelis ML, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–251

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1976) The evolution of the universal genetic code. Proc Natl Acad Sci USA 73:1000–1003

    Article  Google Scholar 

  • Wong JT (2005) Coevolution theory of the genetic code at age thirty. BioEssays 27:416–425

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Sheppard K, Soll D (2008) Amino acids modifications on tRNA. Acta Bioch Biophys Sin 32:539–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Di Giulio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giulio, M. The Last Universal Common Ancestor (LUCA) and the Ancestors of Archaea and Bacteria were Progenotes. J Mol Evol 72, 119–126 (2011). https://doi.org/10.1007/s00239-010-9407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9407-2

Keywords

Navigation