Skip to main content
Log in

Comparing Evolutionary Patterns and Variability in the Mitochondrial Control Region and Cytochrome b in Three Species of Baleen Whales

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The rapidly evolving mitochondrial control region remains an important source of information on phylogeography and demographic history for cetaceans and other vertebrates, despite great uncertainty in the rate of nucleotide substitution across both nucleotide positions and lineages. Patterns of variation in linked markers with slower rates of evolution can potentially be used to calibrate the rate of nucleotide substitution in the control region and to better understand the interplay of evolutionary and demographic forces across the mitochondrial genome above and below the species level. We have examined patterns of diversity within and between three baleen whale species (gray, humpback, and Antarctic minke whales) in order to determine how patterns of molecular evolution differ between cytochrome b and the control region. Our results show that cytochrome b is less variable than expected given the diversity in the control region for gray and humpback whales, even after functional differences are taken into account, but more variable than expected for minke whales. Differences in the frequency distributions of polymorphic sites and in best-fit models of nucleotide substitution indicate that these patterns may be the result of hypervariability in the control region in gray and humpback whales but, in minke whales, may result from a large, stable or expanding population size coupled with saturation at the control region. Using paired cytochrome b and control region data across individuals, we show that the average rate of nucleotide substitution in the control region may be on average 2.6 times higher than phylogenetically derived estimates in cetaceans. These results highlight the complexity of making inferences from control region data alone and suggest that applying simple rules of DNA sequence analyses across species may be difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alter SE, Rynes E, Palumbi SR (2007) DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc Natl Acad Sci USA 104:15162–15167

    Article  PubMed  CAS  Google Scholar 

  • Alter SE, Flores Ramirez S, Nigenda S, Urbán Ramirez J, Rojas Bracho L, Palumbi SR (2008) Mitochondrial and nuclear genetic variation across calving lagoons in Eastern North Pacific gray whales (Eschrichtius robustus). J Hered. doi:10.1093/jhered/esn090

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    PubMed  CAS  Google Scholar 

  • Arnason U, Gullberg A (1994) Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature 367:726–728

    Article  PubMed  CAS  Google Scholar 

  • Baker CS, Medrano-Gonzalez L (2002) World-wide distribution and diversity of humpback whale mitochondrial DNA lineages. In: Pfeiffer CJ (ed) Cell and molecular biology of marine mammals. Kreiger, Melbourne, FL, pp 84–99

    Google Scholar 

  • Baker CS, Perry A, Bannister JL, Weinrich MT, Abernethy RB, Calambokidis J, Lien J, Lambertsen RH, Ramirez JU, Vasquez O (1993) Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc Natl Acad Sci USA 90:8239–8243

    Article  PubMed  CAS  Google Scholar 

  • Bradley DG, MacHugh DE, Cunningham P, Loftus RT (1996) Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci USA 93:5131–5133

    Article  PubMed  CAS  Google Scholar 

  • Burridge CP, Craw D, Fletcher D, Waters JM (2008) Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 25:624–633

    Article  PubMed  CAS  Google Scholar 

  • Dalebout M, Robertson KM, Frantzis A, Engelhaupt D, Mignucci-Giannoni AA, Rosario-Delestre J, Baker CS (2005) Worldwide structure of mtDNA diversity among Cuvier’s beaked whales (Ziphius cavirostris): implications for threatened populations. Mol Ecol 14:3353–3371

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Yang Z (1999) Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Mol Biol Evol 16:1357–1368

    PubMed  CAS  Google Scholar 

  • Fay JC, Wu C-I (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16:215–222

    Article  PubMed  CAS  Google Scholar 

  • Gillespie H (2004) Population genetics: a concise guide, 2nd edn. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc Natl Acad Sci USA 102:140–145

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Henderson DA (1984) Nineteenth century gray whaling: grounds, catches and kills, practices and depletion of the whale population. In: Jones ML, Swartz SL, Leatherwood S (eds) The Gray Whale, Eschrichtius robustus. Academic Press, Orlando, FL, pp 159–186

  • Higgins DG, Bleasby AJ, Fuchs R (1991) Clustal V: improved software for multiple sequence alignment. CABIOS 8:189–191

    Google Scholar 

  • Ho SYW, Larson G (2006) Molecular clocks: when times are a-changin. Trends Genet 22:79–83

    Article  PubMed  CAS  Google Scholar 

  • Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence events. Mol Biol Evol 22:1561–1568

    Article  PubMed  CAS  Google Scholar 

  • Ho SYW, Kolokotronis S, Allaby RG (2007) Elevated substitution rates estimated from ancient DNA sequences. Biol Lett 3:702–705

    Article  PubMed  CAS  Google Scholar 

  • Ho SYW, Saarma U, Barnett R, Haile J, Shapiro B (2008) The effect of inappropriate calibration: three case studies in molecular ecology. PLoS ONE 3:e1615. doi:10.1371/journal.pone.0001615

  • Hoelzel AR (1994) Genetics and ecology of whales and dolphins. Annu Rev Ecol Syst 25:377–399

    Article  Google Scholar 

  • Ina Y (1995) New methods for estimating the numbers of synonymous and non-synonymous substitutions. J Mol Evol 40:190–226

    Article  PubMed  CAS  Google Scholar 

  • Kemp BM, Malhi RS, McDonough J, Bolnick DA, Eshleman JA, Rickards O, Martinez-Lbarga C, Johnson JR, Lorenz JG, Dixon EJ, Fifield TE, Heaton TH, Worl R, Smith DG (2007) Genetic analysis of early Holocene skeletal remains from Alaska and its implications for the settlement of the Americas. Am J Phy Anthropol 132:605–621

    Article  Google Scholar 

  • Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in human and chimpanzees: control region and protein coding region. In: Osawa S, Honjo T (eds) Evolution of life: fossils molecules and culture. Springer, Tokyo, pp 391–413

    Google Scholar 

  • Kuhner MK, Yamato J, Beerli P, Smith LP, Rynes E, Walkup E, Li C, Sloan J, Colacurcio P, Felsenstein J (2005) LAMARC v 2.0. University of Washington. Available at http://evolution.gs.washington.edu/lamarc.html

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Laws RM (1977) The significance of vertebrates in the Antarctic marine ecosystem. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington DC, pp 411–438

  • LeDuc R, Weller DW, Hyde J, Burdin AM, Rosel PE, Brownell RL Jr, Wursig B, Dizon AE (2002) Genetic differences between western and eastern gray whales (Eschrichtius robustus). J Cetac Res Manage 4:1–5

    Google Scholar 

  • Li W-H, Chu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Weiss G, von Haeseler A (1999) Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110

    PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Parsons TJ et al (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368

    Article  PubMed  CAS  Google Scholar 

  • Pastene LA (2006) What do we know about the stock structure of the Antarctic minke whale? A summary of studies and hypotheses. Paper SC/D06/J12. Presented at the 58th meeting of the international whaling commission, St. Kitts and Nevis

  • Pastene LA, Got M, Kanda N, Zerbini AN, Kerem D et al (2007) Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale (Balaenoptera acutorostrata). Mol Ecol 16:1481–1495

    Article  PubMed  CAS  Google Scholar 

  • Pesole G, Gissi C, DeChirico A, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48:427–434

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Raina SZ, Faith JJ, Disotell TR, Seligmann H, Stewart C, Pollock DD (2006) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15:665–673

    Article  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Median JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  PubMed  CAS  Google Scholar 

  • Roman J, Palumbi SR (2003) Whales before whaling. Science 301:508–510

    Article  PubMed  CAS  Google Scholar 

  • Rooney AP, Honeycutt RL, Derr JN (2001) Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution 55:1678–1685

    PubMed  CAS  Google Scholar 

  • Rosel PE, Dizon AE, Haygood MG (1995) Variability of the mitochondrial control region in populations of the harbour porpoises, Phocoena phocoena, on interoceanic and regional scales. Can J Fish Aquat Sci 52:1210–1219

    CAS  Google Scholar 

  • Rosenbaum HC, Egan MG, Clapham PJ, Brownell RL Jr, Malik S, Brown MW, White BN, Walsh P, DeSalle R (2000) Utility of North Atlantic right whale museum specimens for assessing changes in genetic diversity. Conserv Biol 17:1837

    Article  Google Scholar 

  • Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Nikaido M, Hamilton H, Goto M, Kato H, Kanda N, Pastene LA, Cao Y, Fordyce RE, Hasegawa M, Okada N (2005) Mitochondrial phylogenetics and evolution of mysticete whales. Syst Biol 54:77–90

    Article  PubMed  Google Scholar 

  • Siguroardottir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P (2000) The mutation rate in the human mtDNA control region. Am J Hum Genet 66:1599–1609

    Article  CAS  Google Scholar 

  • Swartz SL, Taylor B, Rugh D (2006) Gray whale Eschrichtius robustus population and stock identity. Mammal Rev 36:66–84

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Wakeley J (1994) Substitution-rate variation among sites and the estimation of transition bias. Mol Biol Evol 11:436–442

    PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregation sites. Theor Pop Biol 7:256–276

    Article  CAS  Google Scholar 

  • Whitehead H (1998) Cultural selection and genetic diversity in matrilineal whales. Science 282:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Hafner MS, Sudman PD (1996) On transition bias in mitochondrial genes of pocket gophers. J Mol Evol 43:32–40

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2003) Phylogenetic analysis by maximum likelihood (PAML), version 3.15. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, Philadelphia

    Google Scholar 

Download references

Acknowledgments

We thank C. S. Baker, Colm Carraher, and A. Lang for providing sequences used in this analysis. We are grateful to four anonymous reviewers for helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Elizabeth Alter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alter, S.E., Palumbi, S.R. Comparing Evolutionary Patterns and Variability in the Mitochondrial Control Region and Cytochrome b in Three Species of Baleen Whales. J Mol Evol 68, 97–111 (2009). https://doi.org/10.1007/s00239-008-9193-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9193-2

Keywords

Navigation