Skip to main content
Log in

The Complete Mitochondrial Genome of the Entomopathogenic Nematode Steinernema carpocapsae: Insights into Nematode Mitochondrial DNA Evolution and Phylogeny

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We determined the complete sequence of the mitochondrial DNA of the entomopathogenic nematode Steinernema carpocapsae and analyzed its structure and composition as well as the secondary structures predicted for its tRNAs and rRNAs. Almost the complete genome has been amplified in one fragment with long PCR and sequenced using a shotgun strategy. The 13,925-bp genome contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins and lacks an ORF encoding ATPase subunit 8. Four initiation codons were inferred, TTT, TTA, ATA, and ATT, most of the genes ended with TAA or TAG, and only two had a T as an incomplete stop codon. All predicted tRNAs showed the nonconventional secondary structure typical of Secernentea. Although we were able to fold the sequences of trnN, trnD, and trnC into more conventional cloverleaf structures after adding adjacent nucleotides, northern blot experiments showed that the nonstandard tRNAs are actually expressed. Phylogenetic and comparative analyses showed that the mitochondrial genome of S. carpocapsae is more closely related to the genomes of A. suum and C. elegans than to that of Strongyloides stercoralis. This finding does not support the phylogeny based on nuclear small subunit ribosomal DNA sequences previously published. This discrepancy may result from differential reproductive strategies and/or differential selective pressure acting on nuclear and mitochondrial genes. The distinctive characteristics observed among mitochondrial genomes of Secernentea may have arisen to counteract the deleterious effects of Muller’s ratchet, which is probably enhanced by the reproductive strategies and selective pressures referred to above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468

    Article  CAS  PubMed  Google Scholar 

  • Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50:348–358

    CAS  PubMed  Google Scholar 

  • Ballard JWO, Chernoff B, James AC (2002) Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56:527–545

    PubMed  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Bedding R, Akhurst R, Kaya HK (1993) Nematodes and the biological control of insect pests. CSIRO, Melbourne

    Google Scholar 

  • Berg OG, Kurland CG (2000) Why mitochondrial genes are most often found in nuclei. Mol Biol Evol 17:951–961

    CAS  PubMed  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Blouin MS, Liu J, Berry RE (1999) Life cycle variation and the genetic structure of nematode populations. Heredity 83:253–259

    Article  CAS  PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  Google Scholar 

  • Börner GV, Yokobori S, Mörl M, Dörner M, Pääbo S (1997) RNA editing in metazoan mitochondria: staying fit without sex. FEBS Lett 409:320–324

    Article  PubMed  Google Scholar 

  • Bourque G, Pevzner PA (2002) Genome–Scale evolution: Reconstructing gene orders in the ancestral species. Genome Res 12:26–36

    CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Google Scholar 

  • Daub J, Mudge J, Blaxter ML (2002) NCBI GenBank accession no. AF538716

  • Denver DR, Morris K, Lynch M, Vassilieva LL, Thomas WK (2000) High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science 289: 2342–2344

    Article  CAS  PubMed  Google Scholar 

  • Denver DR, Morris K, Thomas WK (2003) Phylogenetics in Caenorhabditis elegans: An analysis of divergence and outcrossing. Mol Biol Evol 20:393–400

    CAS  PubMed  Google Scholar 

  • De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9:735–40

    PubMed  Google Scholar 

  • De Rijk P, Robbrecht E, de Hoog S, Caers A, Van de Peer Y, De Wachter R (1999) Database on the structure of large subunit ribosomal RNA. Nucleic Acids Res 27:174–178

    PubMed  Google Scholar 

  • Dowton M (2004) Assessing the relative rate of (mitochondrial) genomic change. Genetics 167:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Gaugler R, Kaya HK (1990) Entomopathogenic nematodes in biological control. CRC, Boca Raton, FL

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gutell RR (1994) Collection of small subunit (16S and 16S-like) ribosomal RNA structures. Nucleic Acids Res 22:3502–3507

    CAS  PubMed  Google Scholar 

  • Gutell RR, Gray MW, Schare MN (1993) A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res 21:3055–3074

    CAS  PubMed  Google Scholar 

  • Haber M, Schüngel M, Putz A, Müller S, Hasert B, Schulenburg H (2005) Evolutionary history of Caenorhabditis elegans inferred from microsatellites: Evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol Biol Evol 22:160–173

    CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hu M, Chilton NB, Grasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32:145–158

    CAS  PubMed  Google Scholar 

  • Hu M, Chilton NB, Grasser RB (2003a) The mitochondrial genome of Strongyloides stercoralis (Nematoda)—idiosyncratic gene order and evolutionary implications. Int J Parasitol 33:1393–1408

    CAS  Google Scholar 

  • Hu M, Gasser RB, Abs El-Osta YG, Chilton NB (2003b) Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis. Parasitology 127:37–51

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hugall A, Moritz C, Stanton J, Wolstenholme DR (1994) Low, but strongly structured mitochondrial DNA diversity in root knot nematodes (Meloidogyne). Genetics 136:903–912

    CAS  PubMed  Google Scholar 

  • Jameson D, Gibson AP, Hudelot C, Higgs PG (2003) OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 31:202–206

    Article  CAS  PubMed  Google Scholar 

  • Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: Sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95:111–127

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Lavrov DV, Brown WL (2001) Trichinella spiralis mtDNA: A nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of Coelomate metazoans. Genetics 157:621–637

    CAS  PubMed  Google Scholar 

  • Lavrov DV, Brown WL, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97:13738–13742

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Poinar Jr GO, Berry RE (2000) Control of insect pests with entomopathogenic nematodes: The impact of molecular biology and phylogenetic reconstruction. Annu Rev Entomol 45:287–306

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (1996) Mutation accumulation in transfer RNAs: Molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 13:209–220

    CAS  PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:1–9

    Google Scholar 

  • Niemi A-K, Moilanen JS, Tanaka M, Hervonen A, Hurme M, Lehtimäki T, Arai Y, Hirose N, Majamaa K (2005) A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects. Eur J Hum Genet 13:166–170

    CAS  PubMed  Google Scholar 

  • Ohtsuki T, Watanabe Y, Takemoto C, Kawai G, Ueda T, Kita K, Kojima S, Kaziro Y, Nyborg J, Watanabe K (2001) An “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria. J Biol Chem 276:21571–21577

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki T, Sato A, Watanabe Y, Watanabe K (2002) A unique serine-specific elongation factor Tu found in nematode mitochondria. Nat Struct Biol 9:669–673

    Article  CAS  PubMed  Google Scholar 

  • Okimoto R, Wolstenholme DR (1990) A set of tRNAs that lack either the TψC arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J 9:3405–3411

    CAS  PubMed  Google Scholar 

  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498

    CAS  PubMed  Google Scholar 

  • Okimoto R, Macfarlane JL, Wolstenholme DR (1994) The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: Consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 39:598–613

    Article  CAS  PubMed  Google Scholar 

  • Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004) A transcriptomic analysis of the phylum Nematoda. Nat Genet 36:1259–1267

    Article  PubMed  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Reichert AS, Mörl M (2000) Repair of tRNAs in metazoan mitochondria. Nucleic Acids Res 28:2043–2048

    CAS  PubMed  Google Scholar 

  • Reyes A, Gissi C, Catzeflis F, Nevo E, Pesole G, Saccone C (2004) Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol Biol Evol 21:397–403

    CAS  PubMed  Google Scholar 

  • Roca AL, Georgiadis N, O’Brien SJ (2005) Cytonuclear genomic dissociation in African elephant species. Nat Genet 37:96–100

    CAS  PubMed  Google Scholar 

  • Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, Gissi C, Reyes A, Larizza A, Sbisà E, Pesole G (2002) Mitochondrial DNA in Metazoa: degree of freedom in a frozen event. Gene 286:3–12

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Strimmer K, Vingron M, von Haeseler A (2002) TREE–PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  CAS  PubMed  Google Scholar 

  • SPSS Inc. (1989–2001) SPSS 11 for Windows. SPSS Inc., Chicago

    Google Scholar 

  • Swerdlow RH (2002) Mitochondrial DNA-related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med 126:271–280

    CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    CAS  PubMed  Google Scholar 

  • Tamura K, M Nei (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492–493

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Van de Peer Y, Van den Broeck I, De Rijk P, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494

    PubMed  Google Scholar 

  • van Tuinen M, Sibley CG, Hedges SB (2000) The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial genes. Mol Biol Evol 17:451–457

    PubMed  Google Scholar 

  • Wernersson R, Pedersen AG (2003) RevTrans—Constructing alignments of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme DR, Kirschner RG, Gross NJ (1972) Heat denaturation studies of rat liver mitochondrial DNA. A denaturation map and changes in molecular configurations. J Cell Biol 53:393–406

    Article  CAS  Google Scholar 

  • Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci USA 84:1324–1328

    CAS  PubMed  Google Scholar 

  • Wuyts J, De Rijk P, Van de Peer Y, Winkelmans T, De Wachter R (2001) The European Large Subunit Ribosomal RNA database. Nucleic Acids Res 29:175–177

    CAS  PubMed  Google Scholar 

  • Yokobori Y, Pääbo S (1995) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA 92:10432–10435

    CAS  PubMed  Google Scholar 

  • Yokobori Y, Pääbo S (1997) Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNATyr. J Mol Biol 265:95–99

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal (POCTI/AGR/41664/2001). R.M. is a postdoctoral fellow of the FCT (SFRH/BPD/13256/2003). We thank Manuela Lima for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Montiel.

Additional information

[Reviewing Editor: Dr. Rafael Zardoya]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montiel, R., Lucena, M.A., Medeiros, J. et al. The Complete Mitochondrial Genome of the Entomopathogenic Nematode Steinernema carpocapsae: Insights into Nematode Mitochondrial DNA Evolution and Phylogeny. J Mol Evol 62, 211–225 (2006). https://doi.org/10.1007/s00239-005-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0072-9

Keywords

Navigation