Skip to main content
Log in

MRI features predict tumor grade in isocitrate dehydrogenase (IDH)–mutant astrocytoma and oligodendroglioma

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Nearly all literature for predicting tumor grade in astrocytoma and oligodendroglioma pre-dates the molecular classification system. We investigated the association between contrast enhancement, ADC, and rCBV with tumor grade separately for IDH-mutant astrocytomas and molecularly-defined oligodendrogliomas.

Methods

For this retrospective study, 44 patients with IDH-mutant astrocytomas (WHO grades II, III, or IV) and 39 patients with oligodendrogliomas (IDH-mutant and 1p/19q codeleted) (WHO grade II or III) were enrolled. Two readers independently assessed preoperative MRI for contrast enhancement, ADC, and rCBV. Inter-reader agreement was calculated, and statistical associations between MRI metrics and WHO grade were determined per reader.

Results

For IDH-mutant astrocytomas, both readers found a stepwise positive association between contrast enhancement and WHO grade (Reader A: OR 7.79 [1.97, 30.80], p = 0.003; Reader B: OR 6.62 [1.70, 25.82], p = 0.006); both readers found that ADC was negatively associated with WHO grade (Reader A: OR 0.74 [0.61, 0.90], p = 0.002); Reader B: OR 0.80 [0.66, 0.96], p = 0.017), and both readers found that rCBV was positively associated with WHO grade (Reader A: OR 2.33 [1.35, 4.00], p = 0.002; Reader B: OR 2.13 [1.30, 3.57], p = 0.003). For oligodendrogliomas, both readers found a positive association between contrast enhancement and WHO grade (Reader A: OR 15.33 [2.56, 91.95], p = 0.003; Reader B: OR 20.00 [2.19, 182.45], p = 0.008), but neither reader found an association between ADC or rCBV and WHO grade.

Conclusions

Contrast enhancement predicts WHO grade for IDH-mutant astrocytomas and oligodendrogliomas. ADC and rCBV predict WHO grade for IDH-mutant astrocytomas, but not for oligodendrogliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  2. The Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  Google Scholar 

  3. Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  Google Scholar 

  4. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508. https://doi.org/10.1056/NEJMoa1407279

    Article  Google Scholar 

  5. Patel SH, Poisson LM, Brat DJ et al (2017) T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res 23:6078–6085. https://doi.org/10.1158/1078-0432.CCR-17-0560

    Article  Google Scholar 

  6. Jain R, Johnson DR, Patel SH et al (2020) “Real world” use of a highly reliable imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro Oncol 22:936–943. https://doi.org/10.1093/neuonc/noaa041

    Article  Google Scholar 

  7. Aliotta E, Dutta SW, Feng X et al (2020) Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign. J Neurooncol 149:325–335. https://doi.org/10.1007/s11060-020-03611-8

    Article  Google Scholar 

  8. Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873. https://doi.org/10.1007/s00401-015-1438-8

    Article  Google Scholar 

  9. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718. https://doi.org/10.1007/s00401-010-0781-z

    Article  Google Scholar 

  10. Shaw E, Arusell R, Scheithauer B et al (2002) Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 20:2267–2276. https://doi.org/10.1200/JCO.2002.09.126

    Article  Google Scholar 

  11. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  Google Scholar 

  12. Yeboa DN, Yu JB, Liao E et al (2019) Differences in patterns of care and outcomes between grade II and grade III molecularly defined 1p19q co-deleted gliomas. Clin Transl Radiat Oncol 15:46–52. https://doi.org/10.1016/j.ctro.2018.12.003

    Article  Google Scholar 

  13. Franceschi E, Tosoni A, Bartolini S et al (2020) Histopathological grading affects survival in patients with IDH-mutant grade II and grade III diffuse gliomas. Eur J Cancer 137:10–17. https://doi.org/10.1016/j.ejca.2020.06.018

    Article  Google Scholar 

  14. Mair MJ, Geurts M, van den Bent MJ, Berghoff AS (2021) A basic review on systemic treatment options in WHO grade II-III gliomas. Cancer Treat Rev 92:102124. https://doi.org/10.1016/j.ctrv.2020.102124

    Article  Google Scholar 

  15. Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355. https://doi.org/10.1056/NEJMoa1500925

    Article  Google Scholar 

  16. van den Bent MJ, Brandes AA, Taphoorn MJB et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350. https://doi.org/10.1200/JCO.2012.43.2229

    Article  Google Scholar 

  17. van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304. https://doi.org/10.1007/s00401-010-0725-7

    Article  Google Scholar 

  18. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas: classification with MR imaging. Radiology 174:411–415. https://doi.org/10.1148/radiology.174.2.2153310

    Article  Google Scholar 

  19. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469. https://doi.org/10.1007/BF00598951

    Article  Google Scholar 

  20. Wetzel SG, Cha S, Johnson G et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803. https://doi.org/10.1148/radiol.2243011014

    Article  Google Scholar 

  21. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179:783–789. https://doi.org/10.2214/ajr.179.3.1790783

    Article  Google Scholar 

  22. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR: Am J Neuroradiol 24:1989

    Google Scholar 

  23. Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798. https://doi.org/10.1148/radiology.211.3.r99jn46791

    Article  Google Scholar 

  24. Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

    Google Scholar 

  25. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51. https://doi.org/10.1148/radiology.191.1.8134596

    Article  Google Scholar 

  26. Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839–846. https://doi.org/10.1148/radiol.2413051276

    Article  Google Scholar 

  27. Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254. https://doi.org/10.1111/j.1750-3639.2009.00352.x

    Article  Google Scholar 

  28. Capper D, Zentgraf H, Balss J et al (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599. https://doi.org/10.1007/s00401-009-0595-z

    Article  Google Scholar 

  29. Felsberg J, Wolter M, Seul H et al (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119:501–507. https://doi.org/10.1007/s00401-010-0647-4

    Article  Google Scholar 

  30. Aliotta E, Nourzadeh H, Batchala PP et al (2019) Molecular subtype classification in lower-grade glioma with accelerated DTI. Am J Neuroradiol 40:1458–1463. https://doi.org/10.3174/ajnr.A6162

    Article  Google Scholar 

  31. Patel SH, Batchala PP, Muttikkal TJE et al (2021) Fluid attenuation in non-contrast-enhancing tumor (nCET): an MRI Marker for Isocitrate dehydrogenase (IDH) mutation in glioblastoma. J Neurooncol 152:523–531. https://doi.org/10.1007/s11060-021-03720-y

    Article  Google Scholar 

  32. Carrillo JA, Lai A, Nghiemphu PL et al (2012) Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 33:1349–1355. https://doi.org/10.3174/ajnr.A2950

    Article  Google Scholar 

  33. Suh CH, Kim HS, Jung SC et al (2018) 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol 20:1573–1583. https://doi.org/10.1093/neuonc/noy113

    Article  Google Scholar 

  34. Johnson DR, Diehn FE, Giannini C et al (2017) Genetically defined oligodendroglioma is characterized by indistinct tumor borders at MRI. AJNR Am J Neuroradiol 38:678–684. https://doi.org/10.3174/ajnr.A5070

    Article  Google Scholar 

  35. Saito T, Muragaki Y, Maruyama T et al (2016) Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade II and III gliomas. Brain Tumor Pathol 33:175–182. https://doi.org/10.1007/s10014-016-0249-5

    Article  Google Scholar 

  36. Darvishi P, Batchala PP, Patrie JT et al (2020) Prognostic value of preoperative MRI metrics for diffuse lower-grade glioma molecular subtypes. Am J Neuroradiol 41:815–821. https://doi.org/10.3174/ajnr.A6511

    Article  Google Scholar 

  37. Suchorska B, Schüller U, Biczok A et al (2019) Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning. Eur J Cancer 107:15–27. https://doi.org/10.1016/j.ejca.2018.10.019

    Article  Google Scholar 

  38. Lin Y, Xing Z, She D et al (2017) IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI. Neuroradiology 59:555–562. https://doi.org/10.1007/s00234-017-1839-6

    Article  Google Scholar 

  39. Wu C-C, Jain R, Radmanesh A et al (2018) Predicting genotype and survival in glioma using standard clinical MR imaging apparent diffusion coefficient images: a pilot study from the Cancer Genome Atlas. Am J Neuroradiol 39:1814–1820. https://doi.org/10.3174/ajnr.A5794

    Article  Google Scholar 

  40. Delgado AF, Delgado AF (2017) Discrimination between glioma grades II and III using dynamic susceptibility perfusion MRI: a meta-analysis. Am J Neuroradiol 38:1348–1355. https://doi.org/10.3174/ajnr.A5218

    Article  Google Scholar 

  41. Wu C-C, Jain R, Neto L et al (2019) MR imaging phenotype correlates with extent of genome-wide copy number abundance in IDH mutant gliomas. Neuroradiology 61:1023–1031. https://doi.org/10.1007/s00234-019-02219-8

    Article  Google Scholar 

  42. Yang X, Xing Z, She D et al (2022) Grading of IDH-mutant astrocytoma using diffusion, susceptibility and perfusion-weighted imaging. BMC Med Imaging 22(1):105

    Article  Google Scholar 

  43. Khalid L, Carone M, Dumrongpisutikul N et al (2012) Imaging Characteristics of oligodendrogliomas that predict grade. Am J Neuroradiol 33:852–857. https://doi.org/10.3174/ajnr.A2895

    Article  Google Scholar 

  44. Lev MH, Ozsunar Y, Henson JW et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendroglimoas. Am J Neuroradiol 25:214–221

    Google Scholar 

  45. Spampinato MV, Smith JK, Kwock L et al (2007) Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. AJR Am J Roentgenol 188:204–212. https://doi.org/10.2214/AJR.05.1177

    Article  Google Scholar 

  46. Xu M, See SJ, Ng WH et al (2005) Comparison of magnetic resonance spectroscopy and perfusion-weighted imaging in presurgical grading of oligodendroglial tumors. Neurosurgery 56:919–926 (discussion 919-926)

    Google Scholar 

  47. Aboud O, Shah R, Vera E et al (2022) Challenges of imaging interpretation to predict oligodendroglioma grade: a report from the Neuro-Oncology Branch. CNS Oncol. 11(1):CNS83. https://doi.org/10.2217/cns-2021-0005

    Article  Google Scholar 

  48. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

David Joyner: study design, implementation, data collection, interpretation, manuscript draft, and revisions

John Garrett: data collection, manuscript draft, and revisions

Prem Batchala: data interpretation, manuscript draft, and revisions

Bharath Rama: manuscript draft and revisions

Joshua Ravicz: manuscript draft and revisions

James Patrie: statistical analysis, interpretation, manuscript draft, and revisions

Maria-B. Lopes: interpretation, manuscript draft, and revisions

Camilo Fadul: interpretation, manuscript draft, and revisions

David Schiff: interpretation, manuscript draft, and revisions

Rajan Jain: interpretation, manuscript draft, and revisions

Sohil Patel: study design, implementation, data collection, interpretation, manuscript draft, and revisions

All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sohil H. Patel.

Ethics declarations

Declarations

This research study was conducted retrospectively from data obtained for clinical purposes, in accordance with the guidelines of the institutional IRB. The requirement for informed consent was waived by our IRB.

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyner, D.A., Garrett, J., Batchala, P.P. et al. MRI features predict tumor grade in isocitrate dehydrogenase (IDH)–mutant astrocytoma and oligodendroglioma. Neuroradiology 65, 121–129 (2023). https://doi.org/10.1007/s00234-022-03038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-03038-0

Keywords

Navigation