Skip to main content

Advertisement

Log in

Can preoperative brain imaging features predict shunt response in idiopathic normal pressure hydrocephalus? A PRISMA review

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

This systematic literature review aimed to identify brain computed tomography (CT) and magnetic resonance imaging (MRI) features that could be used to discriminate idiopathic normal pressure hydrocephalus (iNPH) shunt responders from non-responders.

Methods

PubMed, Embase, Web of Science, and Cochrane were searched following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles reporting preoperative CT and/or MRI features and iNPH shunt response evaluated by changes in gait, dementia, and urinary incontinence were included. Title and abstract screening and full-text article evaluation were done by two authors. Data on patient demographics and inclusion criteria, brain image evaluation, shunting methods, and shunt response evaluation were recorded.

Results

The search resulted in 1274 studies after removing duplicates. Twenty-seven studies were chosen for final review. Both structural (i.e., callosal angle, disproportionately enlarged subarachnoid space hydrocephalus (DESH), and temporal horn diameter) and physiological brain imaging (including aqueductal flow measurement and brain perfusion) had been examined. Fourteen out of 27 studies found no difference in any assessed imaging parameters between responders and non-responders, and none of the examined imaging parameters was repeatedly and consistently reported as significantly different between the two groups.

Conclusions

No brain imaging parameters were consistently and repeatedly reported as different between iNPH shunt responders and non-responders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Keong N, Pena A, Price S et al (2016) Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurg Focus 41:1–18. https://doi.org/10.3171/2016.7.FOCUS16194

    Article  Google Scholar 

  2. Capone PM, Bertelson JA, Ajtai B et al (2020) Neuroimaging of normal pressure hydrocephalus and hydrocephalus. Neurol Clin 38:171–183. https://doi.org/10.1016/j.ncl.2019.09.003

    Article  PubMed  Google Scholar 

  3. Picascia M, Zangaglia R, Bernini S et al (2015) A review of cognitive impairment and differential diagnosis in idiopathic normal pressure hydrocephalus. Funct Neurol 30:217–228. https://doi.org/10.11138/fneur/2015.30.4.217

    Article  PubMed  Google Scholar 

  4. Nakajima M, Yamada S, Miyajima M et al (2021) Special topic guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 61:63–97. https://doi.org/10.2176/nmc.st.2020-0292

    Article  Google Scholar 

  5. Relkin N, Marmarou A, Klinge P et al (2005) INPH guidelines, part II: diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:4–16. https://doi.org/10.1227/01.NEU.0000168185.29659.C5

    Article  Google Scholar 

  6. Korbecki A, Zimny A, Podgórski P et al (2019) Imaging of cerebrospinal fluid flow: fundamentals, techniques, and clinical applications of phase-contrast magnetic resonance imaging. Polish J Radiol 84:e240–e250. https://doi.org/10.5114/pjr.2019.86881

    Article  Google Scholar 

  7. Salma A (2014) Normal pressure hydrocephalus as a failure of ICP homeostasis mechanism: the hidden role of Monro-Kellie doctrine in the genesis of NPH. Child’s Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 30:825–830. https://doi.org/10.1007/s00381-014-2385-8

    Article  Google Scholar 

  8. Park HY, Kim M, Suh CH et al (2021) Diagnostic performance and interobserver agreement of the callosal angle and Evans’ index in idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Eur Radiol. https://doi.org/10.1007/s00330-020-07555-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park HY, Park CR, Suh CH et al (2021) Prognostic utility of disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal pressure hydrocephalus treated with ventriculoperitoneal shunt surgery: a systematic review and meta-analysis. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A7168

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:307–327. https://doi.org/10.1016/0022-510x(65)90016-x

    Article  PubMed  CAS  Google Scholar 

  11. Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:.https://doi.org/10.1136/bmj.n71

  12. Algin O, Hakyemez B, Taskapilioglu O et al (2009) Morphologic features and flow void phenomenon in normal pressure hydrocephalus and other dementias: are they really significant? Acad Radiol 16:1373–1380. https://doi.org/10.1016/j.acra.2009.06.010

    Article  PubMed  Google Scholar 

  13. Kojoukhova M, Koivisto AM, Korhonen R et al (2015) Feasibility of radiological markers in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 157:1709–1719. https://doi.org/10.1007/s00701-015-2503-8

    Article  Google Scholar 

  14. Virhammar J, Laurell K, Cesarini KG et al (2014) The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. Clinical article J Neurosurg 120:178–184. https://doi.org/10.3171/2013.8.JNS13575

    Article  Google Scholar 

  15. Virhammar J, Laurell K, Cesarini KG, Larsson EM (2014) Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. Am J Neuroradiol 35:2311–2318. https://doi.org/10.3174/ajnr.A4046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ziegelitz D, Starck G, Kristiansen D et al (2014) Cerebral perfusion measured by dynamic susceptibility contrast MRI is reduced in patients with idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 39:1533–1542. https://doi.org/10.1002/jmri.24292

    Article  PubMed  Google Scholar 

  17. Ziegelitz D, Arvidsson J, Hellstrom P et al (2015) In patients with idiopathic normal pressure hydrocephalus postoperative cerebral perfusion changes measured by dynamic susceptibility contrast magnetic resonance imaging correlate with clinical improvement. J Comput Assist Tomogr 39:531–540. https://doi.org/10.1097/RCT.0000000000000254

    Article  PubMed  Google Scholar 

  18. Ziegelitz D, Arvidsson J, Hellström P et al (2016) Pre-and postoperative cerebral blood flow changes in patients with idiopathic normal pressure hydrocephalus measured by computed tomography (CT)-perfusion. J Cereb Blood Flow Metab 36:1755–1766. https://doi.org/10.1177/0271678X15608521

    Article  PubMed  CAS  Google Scholar 

  19. Snöbohm C, Malmberg F, Freyhult E, et al (2022) White matter changes should not exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. Fluids Barriers CNS 19:. https://doi.org/10.1186/S12987-022-00338-8

  20. Virhammar J, Ahlgren A, Cesarini KG et al (2020) Cerebral perfusion does not increase after shunt surgery for normal pressure hydrocephalus. J Neuroimaging 30:303–307

    Article  Google Scholar 

  21. Agerskov S, Wallin M, Hellström P et al (2019) Absence of disproportionately enlarged subarachnoid space hydrocephalus, a sharp callosal angle, or other morphologic MRI markers should not be used to exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. Am J Neuroradiol 40:74–79. https://doi.org/10.3174/ajnr.A5910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hong YJ, Kim MJ, Jeong E et al (2018) Preoperative biomarkers in patients with idiopathic normal pressure hydrocephalus showing a favorable shunt surgery outcome. J Neurol Sci 387:21–26. https://doi.org/10.1016/j.jns.2018.01.017

    Article  PubMed  Google Scholar 

  23. Carlsen JF, Backlund ADL, Mardal CA et al (2021) Can shunt response in patients with idiopathic normal pressure hydrocephalus be predicted from preoperative brain imaging? A retrospective study of the diagnostic use of the normal pressure hydrocephalus Radscale in 119 Patients. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A7378

    Article  PubMed  Google Scholar 

  24. Chen J, He W, Zhang X et al (2022) Value of MRI-based semi-quantitative structural neuroimaging in predicting the prognosis of patients with idiopathic normal pressure hydrocephalus after shunt surgery. Eur Radiol. https://doi.org/10.1007/s00330-022-08733-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Algin O, Hakyemez B, Ocakoǧlu G et al (2011) MR cisternography: Is it useful in the diagnosis of normal-pressure hydrocephalus and the selection of ‘good shunt responders’? Diagnostic Interv Radiol 17:105–111. https://doi.org/10.4261/1305-3825.DIR.3133-09.1

    Article  Google Scholar 

  26. Algin O, Hakyemez B, Parlak M (2010) The efficiency of PC-MRI in Diagnosis of normal pressure hydrocephalus and prediction of shunt response. Acad Radiol 17:181–187. https://doi.org/10.1016/j.acra.2009.08.011

    Article  PubMed  Google Scholar 

  27. Craven CL, Toma AK, Mostafa T et al (2016) The predictive value of DESH for shunt responsiveness in idiopathic normal pressure hydrocephalus. J Clin Neurosci 34:294–298. https://doi.org/10.1016/j.jocn.2016.09.004

    Article  PubMed  Google Scholar 

  28. Kanno S, Saito M, Kashinoura T et al (2017) A change in brain white matter after shunt surgery in idiopathic normal pressure hydrocephalus. J Neurol Sci 381:667. https://doi.org/10.1016/j.jns.2017.08.1878

    Article  Google Scholar 

  29. Mori E, Ishikawa M, Kato T et al (2012) Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo) 52:775–809. https://doi.org/10.2176/nmc.52.775

    Article  Google Scholar 

  30. Ishikawa M, Hashimoto M, Kuwana N et al (2008) Guidelines from the guidelines committee of idiopathic normal pressure hydrocephalus, the Japanese society of normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 48:S1–S23. https://doi.org/10.2176/nmc.48.S1

    Article  Google Scholar 

  31. Stecco A, Cassara A, Zuccala A et al (2017) Quantitative analysis of cerebrospinal fluid dynamics at phase contrast cine-MRI: predictivity of neurosurgical Shunt responsiveness in patients with idiopathic normal pressure hydrocephalus. J Neurosurg Sci 64:420–426. https://doi.org/10.23736/S0390-5616.17.04092-9

    Article  PubMed  Google Scholar 

  32. Grahnke K, Jusue-Torres I, Szujewski C et al (2018) The quest for predicting sustained shunt response in normal-pressure hydrocephalus: an analysis of the callosal angle’s utility. World Neurosurg 115:e717–e722. https://doi.org/10.1016/j.wneu.2018.04.150

    Article  PubMed  Google Scholar 

  33. Baroncini M, Balédent O, Ardi CE, et al (2018) Ventriculomegaly in the elderly: who needs a shunt? A MRI study on 90 patients. In: Heldt, T (ed) INTRACRANIAL PRESSURE & NEUROMONITORING XVI. Springer-Verlag Wien, pp 221–228

  34. Garcia-Armengol R, Domenech S, Botella-Campos C et al (2016) Comparison of elevated intracranial pressure pulse amplitude and disproportionately enlarged subarachnoid space (DESH) for prediction of surgical results in suspected idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 158:2207–2213. https://doi.org/10.1007/s00701-016-2858-5

    Article  Google Scholar 

  35. Delwel EJ, de Jong DA, Avezaat CJJ (2005) The prognostic value of clinical characteristics and parameters of cerebrospinal fluid hydrodynamics in shunting for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 147:1037–1043. https://doi.org/10.1007/s00701-005-0570-y

    Article  CAS  Google Scholar 

  36. Kawaguchi T, Hirata Y, Bundo M et al (2011) Role of computerized tomographic cisternography in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 153:2041–2048. https://doi.org/10.1007/s00701-011-1047-9

    Article  Google Scholar 

  37. Shinoda N, Hirai O, Hori S et al (2017) Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: Clinical research. J Neurosurg 127:1436–1442. https://doi.org/10.3171/2016.9.JNS161080

    Article  PubMed  Google Scholar 

  38. Sotoudeh H, Sadaatpour Z, Rezaei A et al (2021) The role of machine learning and radiomics for treatment response prediction in idiopathic normal pressure hydrocephalus. Cureus 13:e18497. https://doi.org/10.7759/cureus.18497

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hellström P, Klinge P, Tans J, Wikkelsø C (2012) A new scale for assessment of severity and outcome in iNPH. Acta Neurol Scand 126:229–237. https://doi.org/10.1111/j.1600-0404.2012.01677.x

    Article  PubMed  Google Scholar 

  40. Kubo Y, Kazui H, Yoshida T et al (2008) Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus. Dement Geriatr Cogn Disord 25:37–45. https://doi.org/10.1159/000111149

    Article  PubMed  Google Scholar 

  41. Eide PK (2006) Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir (Wien) 148:21–29. https://doi.org/10.1007/s00701-005-0654-8

    Article  CAS  Google Scholar 

  42. Sahuquillo J, Rubio E, Codina A et al (1991) Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called Normal Pressure Hydrocephalus syndrome. Acta Neurochir (Wien) 112:50–61

    Article  CAS  Google Scholar 

  43. Scollato A, Gallina P, Gautam B et al (2009) Changes in aqueductal CSF stroke volume in shunted patients with idiopathic normal-pressure hydrocephalus. Am J Neuroradiol 30:1580–1586. https://doi.org/10.3174/ajnr.A1616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bateman GA, Loiselle AM (2007) Can MR measurement of intracranial hydrodynamics and compliance differentiate which patient with idiopathic normal pressure hydrocephalus will improve following shunt insertion? Commentary Acta Neurochir (Wien) 149:462. https://doi.org/10.1007/s00701-007-1142-0

    Article  Google Scholar 

  45. Ishii K, Kanda T, Harada A et al (2008) Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 18:2678–2683. https://doi.org/10.1007/s00330-008-1044-4

    Article  PubMed  Google Scholar 

  46. Cagnin A, Simioni M, Tagliapietra M et al (2015) A simplified callosal angle measure best differentiates idiopathic-normal pressure hydrocephalus from neurodegenerative dementia. J Alzheimers Dis 46:1033–1038. https://doi.org/10.3233/JAD-150107

    Article  PubMed  Google Scholar 

  47. Gallia GL, Rigamonti D, Williams MA (2006) The diagnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neurol 2:375–381

    Article  Google Scholar 

  48. Odagiri H, Baba T, Nishio Y et al (2016) On the utility of MIBG SPECT/CT in evaluating cardiac sympathetic dysfunction in Lewy body diseases. PLoS One 11:e0152746. https://doi.org/10.1371/journal.pone.0152746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fasano A, Espay AJ, Tang-Wai DF et al (2020) Gaps, controversies, and proposed roadmap for research in normal pressure hydrocephalus. Mov Disord 35:1945–1954. https://doi.org/10.1002/md_s.28251

    Article  PubMed  Google Scholar 

  50. Ishikawa M, Hashimoto M, Mori E et al (2012) The value of the cerebrospinal fluid tap test for predicting shunt effectiveness in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 9:1. https://doi.org/10.1186/2045-8118-9-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wikkelso C, Hellstrom P, Klinge PM et al (2013) The European iNPH multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 84:562–568. https://doi.org/10.1136/jnnp-2012-303314

    Article  PubMed  Google Scholar 

  52. Klinge P, Marmarou A, Bergsneider M et al (2005) INPH guidelines, part V: Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery 57:40–52. https://doi.org/10.1227/01.NEU.0000168187.01077.2F

    Article  Google Scholar 

  53. Kockum K, Lilja-Lund O, Larsson EM-M et al (2018) The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol 25:569–576. https://doi.org/10.1111/ene.13555

    Article  PubMed  CAS  Google Scholar 

  54. Ringstad G, Emblem KE, Eide PK et al (2016) Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 124:1850–1857. https://doi.org/10.3171/2015.6.JNS15496

    Article  PubMed  Google Scholar 

  55. Shanks J, Bloch KM, Laurell K et al (2019) Aqueductal CSF stroke volume is increased in patients with idiopathic normal pressure hydrocephalus and decreases after shunt surgery. Am J Neuroradiol 40:453–459. https://doi.org/10.3174/ajnr.A5972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Agerskov S, Arvidsson J, Ziegelitz D et al (2020) MRI diffusion and perfusion alterations in the mesencephalon and pons as markers of disease and symptom reversibility in idiopathic normal pressure hydrocephalus. PLoS One 15:e0240327. https://doi.org/10.1371/journal.pone.0240327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Engel DC, Adib SD, Schuhmann MU, Brendle C (2018) Paradigm-shift: radiological changes in the asymptomatic iNPH-patient to be: an observational study. Fluids Barriers CNS 15:5. https://doi.org/10.1186/s12987-018-0090-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kimihira L, Iseki C, Takahashi Y et al (2020) A multi-center, prospective study on the progression rate of asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on magnetic resonance imaging to idiopathic normal pressure hydrocephalus. J Neurol Sci 419:117166. https://doi.org/10.1016/j.jns.2020.117166

    Article  PubMed  Google Scholar 

  59. Suehiro T, Kazui H, Kanemoto H et al (2019) Changes in brain morphology in patients in the preclinical stage of idiopathic normal pressure hydrocephalus. Psychogeriatrics 19:557–565. https://doi.org/10.1111/psyg.12445

    Article  PubMed  Google Scholar 

  60. Vakili S, Moran D, Hung A et al (2016) Timing of surgical treatment for idiopathic normal pressure hydrocephalus: association between treatment delay and reduced short-term benefit. Neurosurg Focus 41:E2. https://doi.org/10.3171/2016.6.FOCUS16146

    Article  PubMed  Google Scholar 

  61. Chidiac C, Sundström N, Tullberg M et al (2021) Waiting time for surgery influences the outcome in idiopathic normal pressure hydrocephalus - a population-based study. Acta Neurochir (Wien). https://doi.org/10.1007/s00701-021-05085-7

    Article  Google Scholar 

  62. Hiraoka K, Yamasaki H, Takagi M et al (2010) Changes in the volumes of the brain and cerebrospinal fluid spaces after shunt surgery in idiopathic normal-pressure hydrocephalus. J Neurol Sci 296:7–12. https://doi.org/10.1016/j.jns.2010.06.021

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Frederik Carlsen.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest/competing interests concerning this manuscript.

Ethics approval

Ethical approval was not relevant for this systematic literature review.

Informed consent

Informed consent was not relevant for this systematic literature review.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlsen, J.F., Munch, T.N., Hansen, A.E. et al. Can preoperative brain imaging features predict shunt response in idiopathic normal pressure hydrocephalus? A PRISMA review. Neuroradiology 64, 2119–2133 (2022). https://doi.org/10.1007/s00234-022-03021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-03021-9

Keywords

Navigation