Skip to main content

Advertisement

Log in

Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cerebral atrophy after stroke is associated with poor functional outcome. The prediction and prevention of post-stroke brain atrophy could therefore represent a target for neurorestorative therapies. We investigated the associations between peri-infarct metabolite concentrations measured by quantitative MRS and brain volume change in the infarct hemisphere after stroke.

Methods

Twenty patients with ischemic stroke were enrolled. Patients underwent 3T-MRI within 1 week of onset, and at 1 and 3 months. At the baseline scan, an MRS voxel was placed manually in the peri-infarct area and another in the corresponding contralateral region. Volumetric analysis of T1 images was performed using two automated processing packages. Changes in gray and white matter volume were assessed as percentage change between 1 and 3 months.

Results

Mean concentrations (institutional units) of N-acetylaspartic acid (NAA) (6.1 vs 7.0, p = 0.039), total creatine (Cr+PCr) (5.4 vs 5.8, p = 0.043), and inositol (4.5 vs 5.0, p = 0.014), were significantly lower in the peri-infarct region compared with the contralateral hemisphere. There was a significant correlation between baseline peri-infarct NAA and white matter volume change in the infarct hemisphere between 1 and 3 months, with lower NAA being associated with subsequent white matter atrophy (Spearman’s rho = 0.66, p = 0.010). The baseline concentration of Cr+PCr was also significantly correlated with white matter atrophy in the infarct hemisphere (Spearman’s rho = 0.59, p = 0.027). Both of these associations were significant after adjustment for the false discovery rate and were validated using the secondary volumetric method.

Conclusion

MRS may be useful in the prediction of white matter atrophy post-stroke and in the testing of novel neurorestorative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dang C, Liu G, Xing S et al (2013) Longitudinal cortical volume changes correlate with motor recovery in patients after acute local subcortical infarction. Stroke 44(10):2795–2801

    Article  PubMed  Google Scholar 

  2. Gauthier LV, Taub E, Mark VW, Barghi A, Uswatte G (2012) Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke. Stroke 43(2):453–457

    Article  PubMed Central  PubMed  Google Scholar 

  3. Brodtmann A, Pardoe H, Li Q, Lichter R, Ostergaard L, Cumming T (2012) Changes in regional brain volume three months after stroke. J Neurol Sci 322(1):122–128

    Article  PubMed  Google Scholar 

  4. Yassi N, Malpas CB, Campbell B et al (2015) Contralesional thalamic surface atrophy and functional disconnection 3 months after ischemic stroke. Cerebrovasc Dis 39(3–4):232–241

    Article  PubMed  Google Scholar 

  5. Tang X, Wang C, Xia L, Zhu W, Zhao L, Zhu W (2012) Volumetric MRI and 1H MRS study of hippocampus in unilateral MCAO patients: relationship between hippocampal secondary damage and cognitive disorder following stroke. Eur J Radiol 81(10):2788–2793

    Article  PubMed  Google Scholar 

  6. Tang WK, Chen YK, Lu JY et al (2013) Frontal lobe atrophy in depression after stroke. Stroke research and treatment 2013:424769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kuceyeski A, Kamel H, Navi BB, Raj A, Iadecola C (2014) Predicting future brain tissue loss from white matter connectivity disruption in ischemic stroke. Stroke 45(3):717–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Duering M, Righart R, Csanadi E et al (2012) Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 79(20):2025–2028

    Article  PubMed  Google Scholar 

  9. Aoi MC, Hu K, Lo MT, Selim M, Olufsen MS, Novak V (2012) Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke. PLoS One 7(10):e46794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mark VW, Taub E, Perkins C, Gauthier LV, Uswatte G, Ogorek J (2008) Poststroke cerebral peduncular atrophy correlates with a measure of corticospinal tract injury in the cerebral hemisphere. AJNR Am J Neuroradiol 29(2):354–358

    Article  CAS  PubMed  Google Scholar 

  11. Bivard A, Krishnamurthy V, Stanwell P et al (2014) Spectroscopy of reperfused tissue after stroke reveals heightened metabolism in patients with good clinical outcomes. J Cereb Blood Flow Metab 34(12):1944–1950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Provencher SW (2001) Automatic quantitation of localized in vivo1H spectra with LCModel. NMR Biomed 14(4):260–264

    Article  CAS  PubMed  Google Scholar 

  13. Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196

    Article  PubMed Central  PubMed  Google Scholar 

  14. Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075

    Article  CAS  PubMed  Google Scholar 

  15. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Article  CAS  PubMed  Google Scholar 

  16. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80

    Article  CAS  PubMed  Google Scholar 

  17. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26(4):518–529

    Article  PubMed  Google Scholar 

  18. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  CAS  PubMed  Google Scholar 

  19. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489

    Article  PubMed  Google Scholar 

  21. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219

    Article  PubMed  Google Scholar 

  22. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  PubMed  Google Scholar 

  23. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

    Article  PubMed  Google Scholar 

  24. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Medical Imaging, IEEE Transactions on 20(1):45–57

    Article  CAS  Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  26. Finsterer J (2004) Mitochondriopathies. Eur J Neurol 11(3):163–186

    Article  CAS  PubMed  Google Scholar 

  27. Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196(1):7–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nave K-A, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  PubMed  Google Scholar 

  29. Ni JW, Takahashi M, Yatsugi S, Shimizu-Sasamata M, Yamaguchi T (1998) Effects of YM872 on atrophy of substantia nigra reticulata after focal ischemia in rats. Neuroreport 9(16):3719–3724

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Fang SH, Ye YL et al (2006) Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats. Acta Pharmacol Sin 27(9):1103–1110

    Article  CAS  PubMed  Google Scholar 

  31. Shen F, Walker EJ, Jiang L et al (2011) Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood–brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 31(12):2343–2351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mattsson B, Sorensen JC, Zimmer J, Johansson BB (1997) Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 28(6):1225–1231, discussion 1231–1222

    Article  CAS  PubMed  Google Scholar 

  33. Lunn E, Perry V, Brown M, Rosen H, Gordon S (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1(1):27–33

    Article  CAS  PubMed  Google Scholar 

  34. Simmons M, Frondoza C, Coyle J (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45(1):37–45

    Article  CAS  PubMed  Google Scholar 

  35. Mader I, Rauer S, Gall P, Klose U (2008) (1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Radiol 67(2):250–257

    Article  PubMed  Google Scholar 

  36. Wardlaw JM, Marshall I, Wild J, Dennis MS, Cannon J, Lewis SC (1998) Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome. Stroke 29(8):1618–1624

    Article  CAS  PubMed  Google Scholar 

  37. Felber SR, Aichner FT, Sauter R, Gerstenbrand F (1992) Combined magnetic resonance imaging and proton magnetic resonance spectroscopy of patients with acute stroke. Stroke 23(8):1106–1110

    Article  CAS  PubMed  Google Scholar 

  38. Graham GD, Blamire AM, Rothman DL et al (1993) Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study. Stroke 24(12):1891–1896

    Article  CAS  PubMed  Google Scholar 

  39. Pereira AC, Saunders DE, Doyle VL et al (1999) Measurement of initial N-acetyl aspartate concentration by magnetic resonance spectroscopy and initial infarct volume by MRI predicts outcome in patients with middle cerebral artery territory infarction. Stroke 30(8):1577–1582

    Article  CAS  PubMed  Google Scholar 

  40. Scheau C, Preda E, Popa G, Ghergus A, Capsa R, Lupescu I (2012) Magnetic resonance spectroscopy—a non-invasive method in evaluating focal and diffuse central nervous system disease. J Med Life 5(4):423

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Gideon P, Henriksen O, Sperling B et al (1992) Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke 23(11):1566–1572

    Article  CAS  PubMed  Google Scholar 

  42. Walker PM, Ben Salem D, Lalande A, Giroud M, Brunotte F (2004) Time course of NAA T2 and ADC(w) in ischaemic stroke patients: 1H MRS imaging and diffusion-weighted MRI. J Neurol Sci 220(1–2):23–28

    Article  CAS  PubMed  Google Scholar 

  43. Yassi N, Campbell BC, Moffat BA et al (2015) Know your tools—concordance of different methods for measuring brain volume change after ischemic stroke. Neuroradiology 57:1–11

    Article  Google Scholar 

Download references

Acknowledgments

NY is supported by the University of Melbourne (Australian Postgraduate Award) and Neurosciences Victoria Brain and Mind Scholarship. This study was also supported by the Royal Melbourne Hospital Neurosciences Foundation and the National Stroke Foundation, Australia.

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the Melbourne Health Research Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawaf Yassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yassi, N., Campbell, B.C.V., Moffat, B.A. et al. Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke. Neuroradiology 58, 3–10 (2016). https://doi.org/10.1007/s00234-015-1593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1593-6

Keywords

Navigation