Skip to main content

Advertisement

Log in

Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

MR-derived cerebral metabolic rate of oxygen utilization (CMRO2) has been suggested to be analogous to PET-derived CMRO2 and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO2 mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging.

Methods

In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO2 (rCMRO2) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO2 maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO2 values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO2 values in the contralateral tissue.

Results

In tissue with diffusion restriction, mean rCMRO2 values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO2 in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34).

Conclusion

MR-derived CMRO2 was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albers GW, Thijs VN, Wechsler L et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517

    Article  PubMed  Google Scholar 

  2. An H, Ford AL, Chen Y et al (2015) Defining the ischemic penumbra using magnetic resonance oxygen metabolic index. Stroke 46:982–988

    Article  CAS  PubMed  Google Scholar 

  3. An H, Lin W (2000) Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 20:1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baron JC (2001) Mapping the ischaemic penumbra with PET: a new approach. Brain 124:2–4

    Article  CAS  PubMed  Google Scholar 

  5. Baron JC, Frackowiak RS, Herholz K et al (1989) Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J Cereb Blood Flow Metab 9:723–742

    Article  CAS  PubMed  Google Scholar 

  6. Baudrexel S, Volz S, Preibisch C et al (2009) Rapid single-scan T2*-mapping using exponential excitation pulses and image-based correction for linear background gradients. Magn Reson Med 62:263–268

    Article  PubMed  Google Scholar 

  7. Bauer S, Wagner M, Seiler A et al (2014) Quantitative T2′-mapping in acute ischemic stroke. Stroke 45:3280–3286

    Article  PubMed  Google Scholar 

  8. Brott T, Marler JR, Olinger CP et al (1989) Measurements of acute cerebral infarction: lesion size by computed tomography. Stroke 20:871–875

    Article  CAS  PubMed  Google Scholar 

  9. Calamante F, Lythgoe MF, Pell GS et al (1999) Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med 41:479–485

    Article  CAS  PubMed  Google Scholar 

  10. Fiehler J, Kucinski T, Zeumer H (2004) Stroke MRI: pathophysiology, potential and perspectives. Röfo 176:313–323

    CAS  PubMed  Google Scholar 

  11. Furlan M, Marchal G, Viader F et al (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40:216–226

    Article  CAS  PubMed  Google Scholar 

  12. Geisler BS, Brandhoff F, Fiehler J et al (2006) Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke 37:1778–1784

    Article  PubMed  Google Scholar 

  13. Gluer CC, Blake G, Lu Y et al (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  CAS  PubMed  Google Scholar 

  14. Hacke W, Albers G, Al-Rawi Y et al (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73

    Article  CAS  PubMed  Google Scholar 

  15. Hackney DB (2007) Does MR imaging improve precision in stroke thrombolysis trials? Radiology 244:323–324

    Article  PubMed  Google Scholar 

  16. He X, Yablonskiy DA (2007) Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 57:115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heiss WD (2010) The concept of the penumbra: can it be translated to stroke management? Int J Stroke 5:290–295

    Article  PubMed  Google Scholar 

  18. Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34

    Article  PubMed  Google Scholar 

  19. Heiss WD (2014) PET imaging in ischemic cerebrovascular disease: current status and future directions. Neurosci Bull 30:713–732

    Article  CAS  PubMed  Google Scholar 

  20. Heiss WD, Graf R (1994) The ischemic penumbra. Curr Opin Neurol 7:11–19

    Article  CAS  PubMed  Google Scholar 

  21. Heiss WD, Grond M, Thiel A et al (1998) Tissue at risk of infarction rescued by early reperfusion: a positron emission tomography study in systemic recombinant tissue plasminogen activator thrombolysis of acute stroke. J Cereb Blood Flow Metab 18:1298–1307

    Article  CAS  PubMed  Google Scholar 

  22. Heldner MR, Zubler C, Mattle HP et al (2013) National Institutes of Health stroke scale score and vessel occlusion in 2152 patients with acute ischemic stroke. Stroke 44:1153–1157

    Article  PubMed  Google Scholar 

  23. Helenius J, Perkio J, Soinne L et al (2003) Cerebral hemodynamics in a healthy population measured by dynamic susceptibility contrast MR imaging. Acta Radiol 44:538–546

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch NM, Preibisch C (2013) T2* mapping with background gradient correction using different excitation pulse shapes. AJNR Am J Neuroradiol 34:E65–E68

    Article  CAS  PubMed  Google Scholar 

  25. Hirsch NM, Toth V, Forschler A et al (2014) Technical considerations on the validity of blood oxygenation level-dependent-based MR assessment of vascular deoxygenation. NMR Biomed 27:853–862

    Article  CAS  PubMed  Google Scholar 

  26. Jensen-Kondering U, Baron JC (2012) Oxygen imaging by MRI: can blood oxygen level-dependent imaging depict the ischemic penumbra? Stroke 43:2264–2269

    Article  PubMed  Google Scholar 

  27. Kang DW, Chalela JA, Dunn W et al (2005) MRI screening before standard tissue plasminogen activator therapy is feasible and safe. Stroke 36:1939–1943

    Article  CAS  PubMed  Google Scholar 

  28. Kidwell CS (2013) MRI biomarkers in acute ischemic stroke: a conceptual framework and historical analysis. Stroke 44:570–578

    Article  PubMed  Google Scholar 

  29. Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34:2729–2735

    Article  PubMed  Google Scholar 

  30. Kidwell CS, Jahan R, Gornbein J et al (2013) A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 368:914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kjolby BF, Ostergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197

    Article  CAS  PubMed  Google Scholar 

  32. Lu H, Law M, Johnson G et al (2005) Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411

    Article  PubMed  Google Scholar 

  33. Magerkurth J, Volz S, Wagner M et al (2011) Quantitative T*(2) -mapping based on multi-slice multiple gradient echo flash imaging: Retrospective correction for subject motion effects. Magn Reson Med 66:989–997

    Article  PubMed  Google Scholar 

  34. Muir KW, Buchan A, Von Kummer R et al (2006) Imaging of acute stroke. Lancet Neurol 5:755–768

    Article  PubMed  Google Scholar 

  35. Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ostergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15:3–9

    Article  PubMed  Google Scholar 

  37. Rovira A, Orellana P, Alvarez-Sabin J et al (2004) Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 232:466–473

    Article  PubMed  Google Scholar 

  38. Saitta L, Heese O, Forster AF et al (2011) Signal intensity in T2′ magnetic resonance imaging is related to brain glioma grade. Eur Radiol 21:1068–1076

    Article  PubMed  Google Scholar 

  39. Siemonsen S, Fitting T, Thomalla G et al (2008) T2′ imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology 248:979–986

    Article  PubMed  Google Scholar 

  40. Spees WM, Yablonskiy DA, Oswood MC et al (2001) Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 45:533–542

    Article  CAS  PubMed  Google Scholar 

  41. Thomalla G, Cheng B, Ebinger M et al (2011) DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 10:978–986

    Article  PubMed  Google Scholar 

  42. Thomalla G, Schwark C, Sobesky J et al (2006) Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke 37:852–858

    Article  PubMed  Google Scholar 

  43. Toth V, Foerschler A, Hirsch N et al (2013) MR based hypoxia measures in human glioma. J Neurooncol 115:197–207

    Article  CAS  PubMed  Google Scholar 

  44. Turner R, Le Bihan D, Moonen CT et al (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22:159–166

    Article  CAS  PubMed  Google Scholar 

  45. Wagner M, Magerkurth J, Volz S et al (2012) T2′- and PASL-based perfusion mapping at 3 Tesla: influence of oxygen-ventilation on cerebral autoregulation. J Magn Reson Imaging 36:1347–1352

    Article  PubMed  Google Scholar 

  46. World Medical A (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194

    Article  Google Scholar 

  47. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763

    Article  CAS  PubMed  Google Scholar 

  48. Yablonskiy DA, Sukstanskii AL, He X (2013) Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. NMR Biomed 26:963–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zaro-Weber O, Moeller-Hartmann W, Heiss WD et al (2012) Influence of the arterial input function on absolute and relative perfusion-weighted imaging penumbral flow detection: a validation with (1)(5)O-water positron emission tomography. Stroke 43:378–385

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Ralf Deichmann for providing the template of source code for the correction of background gradients and motion in T2*-mapping.

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the institutional Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

HK is employee of Philips Healthcare, which is the manufacturer of the MR-System used in this study. HK receives no other payments than his regular salary from Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra S. Gersing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gersing, A.S., Ankenbrank, M., Schwaiger, B.J. et al. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke. Neuroradiology 57, 1253–1261 (2015). https://doi.org/10.1007/s00234-015-1592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1592-7

Keywords

Navigation