Skip to main content
Log in

Secondary parenchymal and vascular changes after middle cerebral artery stroke in children

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Ischemic brain lesions might present with unexpected increased signal intensity at MR angiography within the ischemic lesion and secondary parenchymal changes in regions distal to the ischemia itself. We retrospectively investigated the rate and time course of vascular and parenchymal changes in children with isolated middle cerebral artery (MCA) stroke.

Methods

Twelve children (mean age at stroke onset 4.8 years, range 0.8–15 years, six females, seven right MCA strokes) suffering from a first ever acute isolated MCA stroke had repeated MR scans (mean scan number, 3.5; range 2–6; mean follow-up, 11 months; range 0.5–24 months).

Results

Ipsilaterally to MCA stroke, we recorded increased vessel signal at MR angiography during first to fourth day in 4/7 children (all had MCA recanalization), corticospinal tract cytotoxic-like edema during second day to second month in 7/11 (three children with globus pallidum ischemia had concomitant substantia nigra changes during second to third week), corticospinal tract T2 abnormalities from fifth day onwards in 9/12, focal thalamic cytotoxic-like edema during fifth day to first month in 5/8, focal thalamic T2 hyperintensity during sixth day to third week in 2/4, and faint T2 hypointensity from second month in 7/10 children.

Conclusion

Vascular and secondary parenchymal changes, likely due to luxury perfusion, Wallerian, retrograde, or trans-synaptic degeneration, are common in pediatric MCA stroke population. They might mimic new ischemic lesions or suggest conditions different from stroke leading to diagnostic pitfalls and inappropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A (1990) Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke 21:1485–1488

    Article  PubMed  CAS  Google Scholar 

  2. Tamura A, Tahira Y, Nagashima H, Kirino T, Gotoh O, Hojo S, Sano K (1991) Thalamic atrophy following cerebral infarction in the territory of the middle cerebral artery. Stroke 22:615–618

    Article  PubMed  CAS  Google Scholar 

  3. Nakane M, Tamura A, Nagaoka T, Hirakawa K (1997) MR detection of secondary changes remote from ischemia: preliminary observations after occlusion of the middle cerebral artery in rats. AJNR 18:945–950

    PubMed  CAS  Google Scholar 

  4. Dihné M, Grommes C, Lutzenburg M, Witte OW, Block F (2002) Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke 33:3006–3011

    Article  PubMed  Google Scholar 

  5. Nakane M, Tamura A, Sasaki Y, Teraoka A (2002) MRI of secondary changes in the thalamus following a cerebral infarct. Neuroradiology 44:915–920

    Article  PubMed  CAS  Google Scholar 

  6. Abe O, Nakane M, Aoki S, Hayashi N, Masumoto T, Kunimatsu A, Mori H, Tamura A, Ohtomo K (2003) MR imaging of postischemic neuronal death in the substantia nigra and thalamus following middle cerebral artery occlusion in rats. NMR Biomed 16:152–159

    Article  PubMed  CAS  Google Scholar 

  7. Hervé D, Molko N, Pappata S, Buffon F, LeBihan D, Bousser MG, Chabriat H (2005) Longitudinal thalamic diffusion changes after middle cerebral artery infarcts. J Neurol Neurosurg Psychiatry 76:200–205

    Article  PubMed  Google Scholar 

  8. Hirouchi Y, Suzuki E, Mitsuoka C, Jin H, Kitajima S, Kohjimoto Y, Enomoto M, Kugino K (2007) Neuroimaging and histopathological evaluation of delayed neurological damage produced by artificial occlusion of the middle cerebral artery in Cynomolgus monkeys: establishment of a monkey model for delayed cerebral ischemia. Exp Toxicol Pathol 59:9–16

    Article  PubMed  Google Scholar 

  9. Justicia C, Ramos-Cabrer P, Hoehn M (2008) MRI detection of secondary damage after stroke: chronic iron accumulation in the thalamus of the rat brain. Stroke 39:1541–1547

    Article  PubMed  Google Scholar 

  10. Li C, Ling X, Liu S, Xu A, Zhang Y, Xing S, Pei Z, Zeng J (2011) Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy. BMC Neurol 11:49

    Article  PubMed  Google Scholar 

  11. Giroud M, Fayolle H, Martin D, Baudoin N, André N, Gouyon JB, Nivelon JL, Dumas R (1995) Late thalamic atrophy in infarction of the middle cerebral artery territory in neonates. A prospective clinical and radiological study in four children. Childs Nerv Syst 11:133–136

    Article  PubMed  CAS  Google Scholar 

  12. Toledo M, Munuera J, Sueiras M, Rovira R, Alvarez-Sabín J, Rovira A (2008) MRI findings in aphasic status epilepticus. Epilepsia 49:1465–1469

    Article  PubMed  Google Scholar 

  13. Marchal G, Young AR, Baron JC (1999) Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab 19:467–482

    Article  PubMed  CAS  Google Scholar 

  14. Lansberg MG, O’Brien MW, Norbash AM, Moseley ME, Morrell M, Albers GW (1999) MRI abnormalities associated with partial status epilepticus. Neurology 52:1021–1027

    Article  PubMed  CAS  Google Scholar 

  15. Kawahara I, Tsutsumi K, Hirose M, Matsuo Y, Yokoyama H (2004) Transient abnormalities associated with status epilepticus on diffusion-weighted MR imaging. No To Shinkei 56:333–338

    PubMed  Google Scholar 

  16. Chatzikonstantinou A, Gass A, Förster A, Hennerici MG, Szabo K (2011) Features of acute DWI abnormalities related to status epilepticus. Epilepsy Res 97:45–51

    Article  PubMed  Google Scholar 

  17. Szabo K, Poepel A, Pohlmann-Eden B, Hirsch J, Back T, Sedlaczek O, Hennerici M, Gass A (2005) Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain 128:1369–1376

    Article  PubMed  Google Scholar 

  18. Katramados AM, Burdette D, Patel SC, Schultz LR, Gaddam S, Mitsias PD (2009) Periictal diffusion abnormalities of the thalamus in partial status epilepticus. Epilepsia 50:265–275

    Article  PubMed  Google Scholar 

  19. Uchino A, Sawada A, Takase Y, Egashira R, Kudo S (2004) Transient detection of early wallerian degeneration on diffusion-weighted MRI after an acute cerebrovascular accident. Neuroradiology 46:183–188

    Article  PubMed  CAS  Google Scholar 

  20. Kang DW, Chu K, Yoon BW, Song IC, Chang KH, Roh JK (2000) Diffusion-weighted imaging in Wallerian degeneration. J Neurol Sci 178:167–169

    Article  PubMed  CAS  Google Scholar 

  21. Domi T, deVeber G, Shroff M, Kouzmitcheva E, MacGregor DL, Kirton A (2009) Corticospinal tract pre-wallerian degeneration: a novel outcome predictor for pediatric stroke on acute MRI. Stroke 40:780–787

    Article  PubMed  Google Scholar 

  22. Husson B, Hertz-Pannier L, Renaud C, Allard D, Presles E, Landrieu P, Chabrier S (2010) Motor outcomes after neonatal arterial ischemic stroke related to early MRI data in a prospective study. Pediatrics 126:e912–e918

    Article  Google Scholar 

  23. Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D, Schlaug G (2010) Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology 74:280–287

    Article  PubMed  CAS  Google Scholar 

  24. Ogawa T, Yoshida Y, Okudera T, Noguchi K, Kado H, Uemura K (1997) Secondary thalamic degeneration after cerebral infarction in the middle cerebral artery distribution: evaluation with MR imaging. Radiology 204:255–262

    PubMed  CAS  Google Scholar 

  25. Dietrich RB, Bradley WG Jr (1988) Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology 168:203–206

    PubMed  CAS  Google Scholar 

  26. Cross PA, Atlas SW, Grossman RI (1990) MR evaluation of brain iron in children with cerebral infarction. AJNR Am J Neuroradiol 11:341–348

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Manara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manara, R., Sartori, S., Nosadini, M. et al. Secondary parenchymal and vascular changes after middle cerebral artery stroke in children. Neuroradiology 55, 1259–1266 (2013). https://doi.org/10.1007/s00234-013-1248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1248-4

Keywords

Navigation