Skip to main content

Advertisement

Log in

A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Hippocampal shape anomaly (HSA), characterised by a rounded hippocampus, has been documented in congenital malformations and epileptic patients. Subtle structural hippocampal abnormalities have been demonstrated in patients with schizophrenia. We tested the hypothesis that HSA is more frequent in schizophrenia, particularly in patients from families multiply affected by schizophrenia, and that HSA is transmitted within these families. We also aimed to define the anatomical features of the hippocampus and other cerebral structures in the HSA spectrum and to determine the prevalence of HSA in a control group. We reviewed the magnetic resonance imaging of a large number of subjects with schizophrenia and bipolar disorder, many of who came from multiply affected families, relatives of the affected probands, and controls. Quantitative measures of hippocampal shape and position and other qualitative anatomical measures were performed (including depth of dominant sulcus cortical cap, angle of dominant sulcus and hippocampal fissure, bulk of collateral white matter, prominence of temporal horn lateral recess and blurring of internal hippocampal architecture) on subjects with HSA. A spectrum of mild, moderate and severe HSA was defined. The prevalence of HSA was, 7.8% for the controls (n=218), 9.3% for all schizophrenic subjects (n=151) and 12.3% for familial schizophrenic subjects (n=57). There was a greater prevalence of moderate or severe forms of HSA in familial schizophrenics than controls. However, there was no increase in the prevalence of HSA in the unaffected first-degree relatives of schizophrenic patients or in patients with familial bipolar disorder. HSA was rarely transmitted in families. HSA was frequently associated with a deep, vertical collateral/occipito-temporal sulcus and a steep hippocampal fissure. Our data raise the possibility that HSA is linked to disturbances of certain neurodevelopmental genes associated with schizophrenia. However, the lack of any increase in prevalence in the unaffected relatives of patients and the lack of clustering within individual pedigrees argues against this developmental anomaly being commonly associated with genetic predisposition to the illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atlas SW, Zimmerman RA, Bilaniuk LT, Rorke L, Hackney DB, Goldberg HI, Grossman RI (1986) Corpus callosum and limbic system: neuroanatomic MR evaluation of developmental anomalies. Radiology 160:355–362

    CAS  PubMed  Google Scholar 

  2. Baker LL, Barkovich AJ (1992) The large temporal horn: MR analysis in developmental brain anomalies versus hydrocephalus. AJNR Am J Neuroradiol 13:115–122

    CAS  PubMed  Google Scholar 

  3. Sato N, Hatakeyama S, Shimizu N, Hikima A, Aoki J, Endo K (2001) MR evaluation of the hippocampus in patients with congenital malformations of the brain. AJNR Am J Neuroradiol 22:389–393

    CAS  PubMed  Google Scholar 

  4. Barsi P, Kenez J, Solymosi D et al (2000) Hippocampal malrotation with normal corpus callosum: a new entity? Neuroradiology 42:339–345

    Article  CAS  PubMed  Google Scholar 

  5. Baulac M, De Grissac N, Hasboun D et al (1998) Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol 44:223–233

    CAS  PubMed  Google Scholar 

  6. Lehericy S, Dormont D, Clemenceau S, Granat O, Marsault C, Baulac M (1995) Developmental abnormalities of the medial temporal lobe in patients with temporal lobe epilepsy. AJNR Am J Neuroradiol 16:617–626

    CAS  PubMed  Google Scholar 

  7. Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull 23:423–435

    CAS  PubMed  Google Scholar 

  8. Csernansky JG, Joshi S, Wang L et al (1998) Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci USA 95:11406–11411

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Joshi SC, Miller MI, Csernansky JG (2001) Statistical analysis of hippocampal asymmetry in schizophrenia. Neuroimage 14:531–545

    Article  CAS  PubMed  Google Scholar 

  10. Shenton ME, Gerig G, McCarley RW, Szekely G, Kikinis R (2002) Amygdala-hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data. Psychiatry Res 115:15–35

    Article  PubMed  Google Scholar 

  11. Vogeley K, Tepest R, Pfeifer U et al (2001) Right frontal hypergyria differentiation on affected and unaffected siblings with families multiply affected with schizophrenia: a morphometric MRI study. Am J Psychiatry 158:494–496

    Article  CAS  PubMed  Google Scholar 

  12. Van Os J, Woodruff PWR, Fananas L et al (2000) Association between cerebral structural abnormalities and dermatoglyphic ridge counts in schizophrenia. Comp Psychiatry 41:380–384

    Article  Google Scholar 

  13. Honer WG, Bassett AS, Smith GN, Lapointe JS, Falkai P (1994) Temporal lobe abnormalities in multigenerational families with schizophrenia. Biol Psychiatry 36:737–743

    Article  CAS  PubMed  Google Scholar 

  14. Frangou S, Sharma T, Barta P, Pearlson G, Murray RM (1997) The Maudsley Family Study 4. Normal planum temporale asymmetry in familial schizophrenia. Br J Psychiatry 170:328–333

    CAS  PubMed  Google Scholar 

  15. Sharma T, Lancaster E, Lee D et al (1998) Brain changes in schizophrenia: volumetric MRI study of families multiply affected with schizophrenia—the Maudsley Family Study 5. Br J Psychiatry 173:132–138

    CAS  PubMed  Google Scholar 

  16. McDonald C, Grech A, Toulopoulou T et al (2002) Brain volumes in familial and non familial schizophrenic probands and their unaffected relatives. Neuropsychiatric Genetics 114:616–625

    Article  PubMed  Google Scholar 

  17. Spitzer RL, Endicott J, Robins E. Research Diagnostic Criteria (RDC) for a selected group of functional disorders. New York State Psychiatric Institution, Biometrics Research Division, New York

  18. Endicott J, Spitzer RL (1978) A diagnostic interview: the Schedule for Affective Disorders and Schizophrenia. Arch Gen Psychiatry 35:837–844

    Google Scholar 

  19. Endicott J, Andreasen NC, Spitzer RL (1978) Family history research diagnostic criteria. New York State Psychiatric Institution, New York

  20. Nurnberger JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, Severe JB, Malaspina D, Reich T (1994) Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51:849–859

    PubMed  Google Scholar 

  21. Barta PE, Dhingra L, Royall R, Schwartz E (1997) Improving stereological estimates for the volume of structures identified in three-dimensional arrays of spatial data. J Neurosci Methods 154:661–666

    CAS  Google Scholar 

  22. Duvernoy HM (1998) The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Bronen RA, Cheung G (1991) MRI of the temporal lobe: normal variations with special reference towards epilepsy. Magn Reson Imaging 9:501–507

    Article  CAS  PubMed  Google Scholar 

  24. Jackson GD, Berkovic SF, Duncan JS, Connelly A (1993) Optimizing the diagnosis of hippocampal sclerosis using MR imaging. AJNR Am J Neuroradiol 14:753–762

    CAS  PubMed  Google Scholar 

  25. Baldwin GN, Tsuruda JS, Maravilla KR, Hamill GS, Hayes CE (1994) The fornix in patients with seizures caused by unilateral hippocampal sclerosis: detection of unilateral volume loss on MR images. AJR Am J Roentgenol 162:1185–1189

    CAS  PubMed  Google Scholar 

  26. Sumi SM (1970) Brain malformations in the trisomy 18 syndrome. Brain 93:821–830

    CAS  PubMed  Google Scholar 

  27. Kier EL, Kim JH, Fulbright RK, Bronen R (1997) Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR Am J Neuroradiol 18:525–532

    CAS  PubMed  Google Scholar 

  28. Tsuang MT, Stone WS, Faraone SV (2001) Genes, environment and schizophrenia. Br J Psychiatry 178:s18–s24

    PubMed  Google Scholar 

  29. Jones PB, Murray RM (1991) The genetics of schizophrenia is the genetics of neurodevelopment. Br J Psychiatry 158:615–623

    CAS  PubMed  Google Scholar 

  30. Crow TJ, Ball J, Bloom SR et al (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry 46:1145–1150

    CAS  PubMed  Google Scholar 

  31. McCarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA, Shenton ME (1999) MRI anatomy of schizophrenia. Biol Psychiatry 45:1099–1119

    Google Scholar 

  32. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging. Arch Gen Psychiatry 55:433–440

    CAS  PubMed  Google Scholar 

  33. Allin M, Murray R (2002) Schizophrenia: a neurodevelopmental or neurodegenerative disorder? Curr Opin Psychiatry 15:9–15

    Article  Google Scholar 

  34. Bilder RM (2001) Schizophrenia as a neurodevelopmental disorder. Curr Opin Psychiatry 14:9–15

    Article  Google Scholar 

  35. McDonald B, Highley JR, Walker MA, Herron BM, Cooper SJ, Esiri MM, Crow TJ (2000) Anomalous asymmetry of fusiform and parahippocampal gyrus gray matter in schizophrenia: a postmortem study. Am J Psychiatry 157:40–47

    CAS  PubMed  Google Scholar 

  36. Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE (1990) The hippocampus and parahippocampus in schizophrenic, suicide and control brains. Arch Gen Psychiatry 47:1029–1034

    CAS  PubMed  Google Scholar 

  37. Bogerts B, Meertz E, Schonfeldt-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42:784–791

    Google Scholar 

  38. Casanova MF, Rothberg B (2002) Shape distortion of the hippocampus: a possible explanation of the pyramidal cell disarray reported in schizophrenia. Schizophr Res 5:19–24

    Article  Google Scholar 

  39. Highley JR, Esiri MM, McDonald B, Cooper SJ, Crow TJ (1998) Temporal-lobe length is reduced, and gyral folding is increased in schizophrenia: a post mortem study. Schizophr Res 34:1–12

    Article  CAS  PubMed  Google Scholar 

  40. Cannon M, Caspi A, Moffitt TE et al (2002) Evidence for early childhood pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 59:449–457

    Article  PubMed  Google Scholar 

  41. Pearlson GD, Barta PE, Powers RE et al (1997) Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biol Psychiatry 41:1–14

    Article  CAS  PubMed  Google Scholar 

  42. Weinberger DR, DeLisi LE, Neophytides AN, Wyatt RJ (1981) Familial aspects of CT scan abnormalities in chronic schizophrenic patients. Psychiatr Res 4:65–71

    Article  CAS  Google Scholar 

  43. Suddath RL, Casanova MF, Goldberg TE, Daniel DG, Kelsoe JR, Weinberger D (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 332:789–794

    Google Scholar 

  44. Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm, Vestergaard A (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers. Arch Gen Psychiatry 50:551–564

    CAS  PubMed  Google Scholar 

  45. Essen DC van (1997) A tension based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    PubMed  Google Scholar 

  46. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63

    CAS  PubMed  Google Scholar 

  47. Bronen RA, Cheung G (1991) MRI of the normal hippocampus. Magn Reson Imaging 9:497–500

    Article  CAS  PubMed  Google Scholar 

  48. Mamourian AC, Cho CH, Saykin AJ, Poppito NL (1998) Association between size of the lateral ventricle and asymmetry of the fornix in patients with temporal lobe epilepsy. AJNR Am J Neuroradiol 19:9–13

    CAS  PubMed  Google Scholar 

  49. Meiners LC, van Gils A, Jansen GH (1994) Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis. AJNR Am J Neuroradiol 15:1547–1555

    CAS  PubMed  Google Scholar 

  50. Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right-left asymmetries in the brain. Science 199:852–856

    CAS  PubMed  Google Scholar 

  51. Crow T (1990) Temporal lobe asymmetries as the key to etiology of schizophrenia. Schizophr Bull 3:433–443

    Google Scholar 

  52. Bilder RM, Bogerts B, Ashtari M et al (1995) Anterior hippocampal volume reductions predict frontal lobe dysfunction in first episode schizophrenia. Schizophr Res 17:47–58

    CAS  PubMed  Google Scholar 

  53. Geschwind N, Galaburda AM. Cerebral lateralization (1985) Biological mechanisms, associations, and pathology: a hypothesis and a program for research. Arch Neurol 42:428–459

    CAS  PubMed  Google Scholar 

  54. Lewis S (1995) Secondary schizophrenia. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell Oxford

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. J. Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, S.E.J., Ng, V., McDonald, C. et al. A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder. Neuroradiology 46, 523–534 (2004). https://doi.org/10.1007/s00234-004-1224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-004-1224-0

Keywords