Skip to main content
Log in

Forces of Change: Optical Tweezers in Membrane Remodeling Studies

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein–DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein–membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GES, Bassereau P (2014) Membrane shape modulates transmembrane protein distribution. Dev Cell 28:212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Doosti B, Pezeshkian W, Bruhn DS, Ipsen JH, Khandelia H, Jeffries GDM, Lobovkina T (2017) Membrane tubulation in lipid vesicles triggered by the local application of calcium ions. Langmuir 33:11010–11017

    Article  CAS  PubMed  Google Scholar 

  • Allard A, Bouzid M, Betz T, Simon C, Abou-Ghali M, Lemière J, Valentino F, Manzi J, Brochard-Wyart F, Guevorkian K et al (2020) Actin modulates shape and mechanics of tubular membranes. Sci Adv 6:3050

    Article  Google Scholar 

  • Ambroggio E, Sorre B, Bassereau P, Goud B, Manneville JB, Antonny B (2010) ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J 29:292–303

    Article  CAS  PubMed  Google Scholar 

  • Angelova MI, Dimitrov DS (1986) Liposome Electro formation. Faraday Discuss Chmical Soc 81:303–311

    Article  CAS  Google Scholar 

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  • Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Parasassi T, Gratton E (2000) Giant phospholipid vesicles: Comparison among the whole lipid sample characteristics using different preparation methods - A two photon fluorescence microscopy study. Chem Phys Lipids 105:135–147

    Article  CAS  PubMed  Google Scholar 

  • Bahadori A, Oddershede LB, Bendix PM (2017) Hot-nanoparticle-mediated fusion of selected cells. Nano Res 10:2034–2045

    Article  CAS  Google Scholar 

  • Beltrán-Heredia E, Tsai FC, Salinas-Almaguer S, Cao FJ, Bassereau P, Monroy F (2019) Membrane curvature induces cardiolipin sorting. Commun Biol 2:1–7

    Article  Google Scholar 

  • Bendix PM, Reihani SNS, Oddershede LB (2010) Direct measurements of heating Electromagnetically Trapped Gold nanoparticles on supported lipid Bilayers. ACS Nano 4:2256–2262

    Article  CAS  PubMed  Google Scholar 

  • Bertin A, de Franceschi N, de la Mora E, Maiti S, Alqabandi M, Miguet N, di Cicco A, Roos WH, Mangenot S, Weissenhorn W et al (2020) Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-16368-5

    Article  CAS  Google Scholar 

  • Bolognesi G, Friddin MS, Salehi-Reyhani A, Barlow NE, Brooks NJ, Ces O, Elani Y (2018) Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat Commun 9:1–11

    Article  CAS  Google Scholar 

  • Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, Simonsen AC, Nylandsted J (2017) Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat Commun 8:1–10. https://doi.org/10.1038/s41467-017-01743-6

    Article  CAS  Google Scholar 

  • Boye TL, Jeppesen JC, Maeda K, Pezeshkian W, Solovyeva V, Nylandsted J, Simonsen AC (2018) Annexins induce curvature on free-edge membranes displaying distinct morphologies. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-28481-z

    Article  CAS  Google Scholar 

  • Brouwer I, Giniatullina A, Laurens N, Van Weering JRT, Bald D, Wuite GJL, Groffen AJ (2015) Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Nat Commun 6:1–8

    Article  Google Scholar 

  • Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV (2019) How cells fuse. J Cell Biol 218:1436–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante C, Bustamante C, Alexander L, MacIuba K, Kaiser CM (2020) Single-Molecule Studies of Protein Folding with Optical Tweezers. Annu Rev Biochem 89:443–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecconi G, Shank EA, Bustamante C, Marqusee S (2005) Biochemistry: Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    Article  CAS  PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  CAS  PubMed  Google Scholar 

  • Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, Scheuring S, Roux A (2015) Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation. Cell 163:866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary D, Mossa A, Jadhav M, Cecconi C (2019) Bio-molecular applications of recent developments in optical tweezers. Biomolecules 9:1–19

    Article  Google Scholar 

  • Cuvelier D, Derenyi I, Bassereau P, Nassoy P (2005) Coalescence of membrane tethers: experiments, theory and applications. Biophysical J 88:2714–2726

    Article  CAS  Google Scholar 

  • Dasgupta R, Miettinen MS, Fricke N, Lipowsky R, Dimova R (2018) The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc Natl Acad Sci U S A 115:5756–5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Franceschi N, Alqabandi M, Miguet N, Caillat C, Mangenot S, Weissenhorn W, Bassereau P (2019a) The ESCRT protein CHMP2B acts as a diffusion barrier on reconstituted membrane necks. J Cell Sci 132:217968

    Google Scholar 

  • De Franceschi N, Alqabandi M, Weissenhorn W, Bassereau P (2019b) Dynamic and sequential protein reconstitution on negatively curved membranes by giant vesicles fusion. Bio-Protoc 9:1–13

    Article  Google Scholar 

  • Dimova R, Marques C (2019) The Giant vesicle book. CRC Press https://www.routledge.com/The-Giant-Vesicle-Book/Dimova-Marques/p/book/9781498752176.

  • Dols-Perez A, Marin V, Amador GJ, Kieffer R, Tam D, Aubin-Tam ME (2019) Artificial cell membranes interfaced with optical tweezers: a versatile microfluidics platform for nanomanipulation and mechanical characterization. ACS Appl Mater Interfaces 11:33620–33627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A 108:4846–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espadas J, Pendin D, Bocanegra R, Escalada A, Misticoni G, Trevisan T, Velasco A, Montagna A, Bova S, Ibarra B et al (2019) Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-13327-7

    Article  CAS  Google Scholar 

  • Florentsen CD, Kamp-Sonne A, Moreno-Pescador G, Pezeshkian W, Hakami Zanjani AA, Khandelia H, Nylandsted J, Bendix PM (2021) Annexin A4 trimers are recruited by high membrane curvatures in giant plasma membrane vesicles. Soft Matter 17:308–318

    Article  CAS  PubMed  Google Scholar 

  • Friddin MS, Bolognesi G, Salehi-reyhani A, Ces O, Elani Y (2019) Direct mnipulation of liquid ordered lipid membrane domains using optical traps. Commun Chem 2:1–7. https://doi.org/10.1038/s42004-018-0101-4

    Article  Google Scholar 

  • Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y (2012) Single reconstituted Neuronal SNARE complexes zipper in three distinct stages. Nat Chem Biol 337:1340–1344

    CAS  Google Scholar 

  • Ge J, Bian X, Ma L, Cai Y, Li Y, Yang J, Karatekin E, De Camilli P, Zhang Y (2022) Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers. Nat Chem Biol 18:313–320

    Article  CAS  PubMed  Google Scholar 

  • Gerstle Z, Desai R, Veatch SL (2018) Giant plasma membrane vesicles: an experimental tool for probing the effects of drugs and other conditions on membrane domain stability. Methods Enzymol 603:129–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graber ZT, Shi Z, Baumgart T (2017) Cations induce shape remodeling of negatively charged phospholipid membranes. Phys Chem Chem Phys 19:15285–15295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT Pathway. Dev Cell 21:77–91. https://doi.org/10.1016/j.devcel.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  • Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: It’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and Surface Forces, III. Acedamic press, III

    Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Südhof TC (1999) membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Steinkühler J, Roy D, Dasgupta R, Lipowsky R, Dimova R (2018) Asymmetric ionic conditions generate large membrane curvatures. Nano Lett 18:7816–7821

    Article  CAS  PubMed  Google Scholar 

  • Keidel A, Bartsch TF, Florin EL (2016) Direct observation of intermediate states in model membrane fusion. Sci Rep 6:23691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepler J. 1619. De cometis libelli tres. I. typis Andrea Apergeri, sumptibus Sebastiani Mylii Bibliopolae Augustani.

  • Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT (2014) Mechanisms shaping cell membranes. Curr Opin Cell Biol 29:53–60. https://doi.org/10.1016/j.ceb.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebedew P (1901) Untersuchungen über die Druckkräfte des Lichtes. Ann Phys 311:433–458

    Article  Google Scholar 

  • Lebedew P (1902) An experimental investigation of the pressure of light. Astrophys J 15:60–62

    Article  Google Scholar 

  • Liphardt J, Onoa B, Smith SB, Tinoco IJ, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–737

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Cai Y, Li Y, Jiao J, Wu Z, Shaughnessy BO, Camilli PD, Karatekin E, Zhang Y (2017) Single-molecule force spectroscopy of protein-membrane interactions. Elife 6:1–21

    Article  Google Scholar 

  • Maxwell JC (1873) A treatise on electericity and magnetism. Claredon Press, London

    Google Scholar 

  • McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG, Naismith TV, Colf LA, Afonine P, Arthur C, Sundquist WI et al (2015) Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon HT, Kozlov MM, Martens S (2010) Membrane curvature in synaptic vesicle fusion and beyond. Cell 140:601–605

    Article  CAS  PubMed  Google Scholar 

  • Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM (1999) Single-molecule biomechanics with optical methods. Science 283:1689–1695

    Article  CAS  PubMed  Google Scholar 

  • Mercier V, Larios J, Molinard G, Goujon A, Matile S, Gruenberg J, Roux A (2020) Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat Cell Biol 22:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Pescador G, Florentsen CD, Stbye H, Snder SL, Boye TL, Veje EL, Sonne AK, Semsey S, Nylandsted J, Daniels R et al (2019) Curvature- A nd phase-induced protein sorting quantified in transfected cell-derived giant vesicles. ACS Nano 13:6689–6701

    Article  CAS  PubMed  Google Scholar 

  • Murray DH, Jahnel M, Lauer J, Avellaneda MJ, Brouilly N, Cezanne A, Morales-Navarrete H, Perini ED, Ferguson C, Lupas AN et al (2016) An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537:107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  PubMed  Google Scholar 

  • Nichols EF, Hul GF (1901) A preliminary communication on the pressure of heat and light radiation. Phys Rev 13:307–320

    Google Scholar 

  • Nieminen TA, Knöner G, Heckenberg NR, Rubinsztein-Dunlop H (2007) Physics of optical tweezers. Methods Cell Biol 82:207–236

    Article  CAS  PubMed  Google Scholar 

  • Nishizaka T, Miyata H, Yoshikawa H, Ishiwata SKJK (1995) Unbinding force single motor molecule of muscle. Nature 377:251–254

    Article  CAS  PubMed  Google Scholar 

  • Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79:645–648

    Article  CAS  Google Scholar 

  • Nussenzveig HM (2018) Cell membrane biophysics with optical tweezers. Eur Biophys J 47:499–514

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Ryu JK (2018) Models of synaptotagmin-1 to trigger Ca2+-dependent vesicle fusion. FEBS Lett 592:3480–3492

    Article  CAS  PubMed  Google Scholar 

  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303:495–499

    Article  CAS  PubMed  Google Scholar 

  • Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, Roux A (2020) An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell 182:1140-1155.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prévost C, Zhao H, Manzi J, Lemichez E, Lappalainen P, Callan-Jones A, Bassereau P (2015) IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat Commun 6:8529

    Article  PubMed  Google Scholar 

  • Pucadyil TJ, Schmid SL (2008) Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135:1263–1275. https://doi.org/10.1016/j.cell.2008.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Diaz DA, Merino-Salomón A, Meyer F, Heymann M, Rivas G, Bramkamp M, Schwille P (2021) FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nat Commun 12:1–11. https://doi.org/10.1038/s41467-021-23387-3

    Article  CAS  Google Scholar 

  • Ritchie DB, Woodside MT (2015) Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 34:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizo J (2018) Mechanism of neurotransmitter release coming into focus. Protein Sci 27:1364–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez N, Pincet F, Cribier S (2005) Giant vesicles formed by gentle hydration and electroformation: A comparison by fluorescence microscopy. Colloids Surfaces B Biointerfaces 42:125–130

    Article  CAS  PubMed  Google Scholar 

  • Rørvig-Lund A, Bahadori A, Semsey S, Bendix PM, Oddershede LB (2015) Vesicle fusion triggered by optically heated gold nanoparticles. Nano Lett 15:4183–4188

    Article  PubMed  Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu J, Min D, Rah S, Kim SJ, Park Y, Kim H, Hyeon C, Kim HM, Jahn R, Yoon T (2015) Spring-loaded unraveling ofa single SNARE complex by NSF in one round ofATP turnover. Science 347:1485–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnapp B, Block S, Goldstein L (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  PubMed  Google Scholar 

  • Schöneberg J, Pavlin MR, Yan S, Righini M, Lee IH, Carlson LA, Bahrami AH, Goldman DH, Ren X, Hummer G et al (2018) ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 362:1423–1428

    Article  PubMed  PubMed Central  Google Scholar 

  • Segev N, Avinoam O, Podbilewicz B (2018) Fusogens. Curr Biol 28:R378–R380

    Article  CAS  PubMed  Google Scholar 

  • Seven AB, Brewer KD, Shi L, Jiang QX, Rizo J (2013) Prevalent mechanism of membrane bridging by synaptotagmin-1. Proc Natl Acad Sci U S A 110:3243–3252

    Article  Google Scholar 

  • Sezgin E (2022) Giant plasma membrane vesicles to study plasma membrane structure and dynamics. Biochim Biophys Acta - Biomembr 1864:183857. https://doi.org/10.1016/j.bbamem.2021.183857

    Article  CAS  PubMed  Google Scholar 

  • Sezgin E, Schwille P (2012) Model membrane platforms to study protein-membrane interactions. Mol Membr Biol 29:144–154

    Article  CAS  PubMed  Google Scholar 

  • Sezgin E, Kaiser HJ, Baumgart T, Schwille P, Simons K, Levental I (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Shank EA, Cecconi C, Dill JW, Marqusee S, Bustamante C (2010) The folding cooperativity of a protein is controlled by its chain topology. Nature 465:637–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M, Lee KYC, Bassereau P (2015) Screening of the calcium-induced spontaneous curvature of lipid membranes. Soft Matter 11:5030–5036

    Article  CAS  PubMed  Google Scholar 

  • Simunovic M, Manneville JB, Renard HF, Evergren E, Raghunathan K, Bhatia D, Kenworthy AK, Voth GA, Prost J, McMahon HT et al (2017) Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170:172-184.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M, Evergren E, Callan-Jones A, Bassereau P (2019) Curving cells inside and out: Roles of BAR domain proteins in membrane shaping and its cellular implications. Annu Rev Cell Dev Biol 35:111–129

    Article  CAS  PubMed  Google Scholar 

  • Sinn CG, Antonietti M, Dimova R (2006) Binding of calcium to phosphatidylcholine-phosphatidylserine membranes. Colloids Surfaces A Physicochem Eng Asp 282–283:410–419

    Article  Google Scholar 

  • Solmaz ME, Biswas R, Sankhagowit S, Thompson JR, Mejia CA, Malmstadt N, Povinelli ML (2012) Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap. Biomed Opt Express 3:2419

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorkin R, Marchetti M, Logtenberg E, Piontek MC, Kerklingh E, Brand G, Voleti R, Rizo J, Roos WH, Groffen AJ et al (2020) Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophys J 118:643–656

    Article  CAS  PubMed  Google Scholar 

  • Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF, Prost J, Goud B, Bassereau P (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci U S A 106:5622–5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J, Bassereau P, Roux A (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc Natl Acad Sci U S A 109:173–178

    Article  CAS  PubMed  Google Scholar 

  • Sparkes I (2018) Lessons from optical tweezers: quantifying organelle interactions, dynamics and modelling subcellular events. Curr Opin Plant Biol 46:55–61

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Ketelaar T, De Ruijter NCA, Hawes C (2009) Grab a golgi: Laser trapping of golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10:567–571

    Article  CAS  PubMed  Google Scholar 

  • Stigler J, Ziegler F, Gieseke A, Gebhardt JCMRM (2011) The complex folding network of single calmodulin molecules. Science 334:512–516

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Li L, Yang F, Wang X, Fan F, Yang M, Chen C, Li X, Wang HW, Sui SF (2017) Cryo-EM structures of the ATP-bound Vps4E233Q hexamer and its complex with Vta1 at near-atomic resolution. Nat Commun 8:16064. https://doi.org/10.1038/ncomms16064

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178:104792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian A, Baumgart T (2009) Sorting of lipids and proteins in membrane curvature gradients. Biophys J 96:2676–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai FC, Bertin A, Bousquet H, Manzi J, Senju Y, Tsai MC, Picas L, Miserey-Lenkei S, Lappalainen P, Lemichez E, Coudrier E (2018) Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner. Elife 7:e37262. https://doi.org/10.7554/eLife.37262

    Article  CAS  PubMed  Google Scholar 

  • Tsai FC, Simunovic M, Sorre B, Bertin A, Manzi J, Callan-Jones A, Bassereau P (2021) Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins. Soft Matter 17:4254–4265. https://doi.org/10.7554/eLife.37262

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J (2003) Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol 5:980–986

    Article  CAS  PubMed  Google Scholar 

  • Vietri M, Radulovic M, Stenmark H (2020) The many functions of ESCRTs. Nat Rev Mol Cell Biol 21:25–42. https://doi.org/10.1038/s41580-019-0177-4

    Article  CAS  PubMed  Google Scholar 

  • Vivek A, Bolognesi G, Elani Y (2020) Fusing artificial cell compartments and lipid domains using optical traps: A tool to modulate membrane composition and phase behaviour. Micromachines 11:388

    Article  PubMed Central  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–908

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kumar A, Jin H, Zhang Y (2021) Single-molecule manipulation of macromolecules on GUV or SUV membranes using high-resolution optical tweezers. Biophys J 120:5454–5465

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Ma L, Courtney NA, Zhu J, Zhang Y, Karatekin E (2021) Polybasic patches in both C2 domains of Synaptotagmin-1 are required for evoked neurotransmitter release. bioRxiv. https://doi.org/10.1101/2021.07.05.451149

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

RS acknowledges support by the ISRAEL SCIENCE FOUNDATION (Grant No. 1289/20). SKC acknowledges support by the Ratner Center for Single Molecule Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raya Sorkin.

Ethics declarations

Conflict of interest

S.K.C., R.D. and R.S declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheppali, S.K., Dharan, R. & Sorkin, R. Forces of Change: Optical Tweezers in Membrane Remodeling Studies. J Membrane Biol 255, 677–690 (2022). https://doi.org/10.1007/s00232-022-00241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-022-00241-1

Keywords

Navigation