Skip to main content
Log in

The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Induced cell fusion is a powerful method for production of hybridoma in biotechnology and cell vaccines in medical applications. Among different alternatives, physical methods have an advantage, as they do not require any additives. Among them electrofusion, an electroporation-based cell fusion method holds a great promise. Electric pulses cause cell membrane permeabilization and due to pore formation bring cell membrane into the fusogenic state. At the same time, however, they compromise cell viability. We used a train of 8 × 100 µs electric pulses, delivered at 1 Hz with strengths ranging from 400 to 1600 V/cm. We evaluated electrofusion efficiency by dual color microscopy. We determined cell viability, because during electroporation reactive oxygen species are generated affecting cell survival. The novelty of our study is evaluation of the effect of lipid antioxidant α-tocopherol on cell fusion yield and cell viability on mouse B16-F1 cells. Pretreatment with α-tocopherol slowed down dynamic of cell fusion shortly after electroporation. Twenty-four hours later, fusion yields between α-tocopherol treated and untreated cells were comparable. The viability of α-tocopherol pretreated cells was drastically improved. Pretreatment of cells with α-tocopherol improved whole electrofusion process by more than 60%. We believe that α-tocopherol holds great promise to become an important agent to improve cell electrofusion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0249 and the project J2-9764 Electrofusion of cells in biology, biotechnology and medicine and young researcher funding). Experiments were performed at infrastructural center at Faculty of electrical engineering part of the network of infrastructural centers at the University of Ljubljana MRIC UL IP-0510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa Kanduser.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanduser, M., Kokalj Imsirovic, M. & Usaj, M. The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro. J Membrane Biol 252, 105–114 (2019). https://doi.org/10.1007/s00232-019-00059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00059-4

Keywords

Navigation