Skip to main content
Log in

Sodium Channel NaV1.5 Expression is Enhanced in Cultured Adult Rat Skeletal Muscle Fibers

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

This study analyzes changes in the distribution, electrophysiological properties, and proteic composition of voltage-gated sodium channels (NaV) in cultured adult rat skeletal muscle fibers. Patch clamp and molecular biology techniques were carried out in flexor digitorum brevis (FDB) adult rat skeletal muscle fibers maintained in vitro after cell dissociation with collagenase. After 4 days of culture, an increase of the NaV1.5 channel type was observed. This was confirmed by an increase in TTX-resistant channels and by Western blot test. These channels exhibited increased activation time constant (τm) and reduced conductance, similar to what has been observed in denervated muscles in vivo, where the density of NaV1.5 was increasing progressively after denervation. By real-time polymerase chain reaction, we found that the expression of β subunits was also modified, but only after 7 days of culture: increase in β1 without β4 modifications. β1 subunit is known to induce a negative shift of the inactivation curve, thus reducing current amplitude and duration. At day 7, τh was back to normal and τm still increased, in agreement with a decrease in sodium current and conductance at day 4 and normalization at day 7. Our model is a useful tool to study the effects of denervation in adult muscle fibers in vitro and the expression of sodium channels. Our data evidenced an increase in NaV1.5 channels and the involvement of β subunits in the regulation of sodium current and fiber excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bekoff A, Betz W (1977) Properties of isolated adult rat muscle fibres maintained in tissue culture. J Physiol 271:537–547

    CAS  PubMed  Google Scholar 

  • Brown LD, Schneider MF (2002) Delayed dedifferentiation and retention of properties in dissociated adult skeletal muscle fibers in vitro. In Vitro Cell Dev Biol Anim 38:411–422

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JH, Campbell DT, Beam KG (1986) Na channel distribution in vertebrate skeletal muscle. J Gen Physiol 87:907–932

    Article  CAS  PubMed  Google Scholar 

  • Cangiano A (1985) Denervation supersensitivity as a model for the neural control of muscle. Neuroscience 14:963–971

    Article  CAS  PubMed  Google Scholar 

  • Casadei JM, Gordon RD, Lampson LA, Schotland DL, Barchi RL (1984) Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle. Proc Natl Acad Sci USA 81:6227–6231

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  CAS  PubMed  Google Scholar 

  • Cifelli C, Bourassa F, Gariepy L, Banas K, Benkhalti M, Renaud JM (2007) KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and forces development during fatigue in vitro. J Physiol 582:843–857

    Article  CAS  PubMed  Google Scholar 

  • David M, Martinez-Marmol R, Gonzalez T, Felipe A, Valenzuela C (2008) Differential regulation of Na(v)beta subunits during myogenesis. Biochem Biophys Res Commun 368:761–766

    Article  CAS  PubMed  Google Scholar 

  • Dennis RG, Dow DE (2007) Excitability of skeletal muscle during development, denervation, and tissue culture. Tissue Eng 13:2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Desaphy JF, De Luca A, Imbrici P, Conte Camerino D (1998) Modification by ageing of the tetrodotoxin-sensitive sodium channels in rat skeletal muscle fibres. Biochim Biophys Acta 1373:37–46

    Article  CAS  PubMed  Google Scholar 

  • Desaphy JF, Pierno S, Leoty C, George AL Jr, De Luca A, Camerino DC (2001) Skeletal muscle disuse induces fibre type-dependent enhancement of Na(+) channel expression. Brain 124:1100–1113

    Article  CAS  PubMed  Google Scholar 

  • Filatov GN, Rich MM (2004) Hyperpolarized shifts in the voltage dependence of fast inactivation of Nav1.4 and Nav1.5 in a rat model of critical illness myopathy. J Physiol 559:813–820

    CAS  PubMed  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204:3201–3208

    CAS  PubMed  Google Scholar 

  • Gahr SA, Palti Y, Rexroad CE III (2004) Genomic characterization of a novel pair of ID genes in the rainbow trout (Oncorhynchus mykiss). Anim Genet 35:317–320

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2003) Mechanisms of sodium channel inactivation. Curr Opin Neurobiol 13:284–290

    Article  CAS  PubMed  Google Scholar 

  • Grohovaz F, Lorenzon P, Ruzzier F, Zorec R (1993) Properties of acetylcholine receptors in adult rat skeletal muscle fibers in culture. J Membr Biol 136:31–42

    CAS  PubMed  Google Scholar 

  • Haimovich B, Bonilla E, Casadei J, Barchi R (1984) Immunocytochemical localization of the mammalian voltage-dependent sodium channel using polyclonal antibodies against the purified protein. J Neurosci 4:2259–2268

    CAS  PubMed  Google Scholar 

  • Isom LL (2001) Sodium channel beta subunits: anything but auxiliary. Neuroscientist 7:42–54

    Article  CAS  PubMed  Google Scholar 

  • Isom LL (2002) The role of sodium channels in cell adhesion. Front Biosci 7:12–23

    Article  PubMed  Google Scholar 

  • Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256:839–842

    Article  CAS  PubMed  Google Scholar 

  • Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995a) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433–442

    Article  CAS  PubMed  Google Scholar 

  • Isom LL, Scheuer T, Brownstein AB, Ragsdale DS, Murphy BJ, Catterall WA (1995b) Functional co-expression of the beta 1 and type IIA alpha subunits of sodium channels in a mammalian cell line. J Biol Chem 270:3306–3312

    Article  CAS  PubMed  Google Scholar 

  • Kallen RG, Sheng ZH, Yang J, Chen LQ, Rogart RB, Barchi RL (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4:233–242

    Article  CAS  PubMed  Google Scholar 

  • Ko SH, Lenkowski PW, Lee HC, Mounsey JP, Patel MK (2005) Modulation of Na(v)1.5 by beta1- and beta3-subunit co-expression in mammalian cells. Pflugers Arch 449:403–412

    Article  CAS  PubMed  Google Scholar 

  • Kraner S, Yang J, Barchi R (1989) Structural inferences for the native skeletal muscle sodium channel as derived from patterns of endogenous proteolysis. J Biol Chem 264:13273–13280

    CAS  PubMed  Google Scholar 

  • Lenkowski PW, Shah BS, Dinn AE, Lee K, Patel MK (2003) Lidocaine block of neonatal Nav1.3 is differentially modulated by co-expression of beta1 and beta3 subunits. Eur J Pharmacol 467:23–30

    Article  CAS  PubMed  Google Scholar 

  • Lupa MT, Krzemien DM, Schaller KL, Caldwell JH (1993) Aggregation of sodium channels during development and maturation of the neuromuscular junction. J Neurosci 13:1326–1336

    CAS  PubMed  Google Scholar 

  • Lupa MT, Krzemien DM, Schaller KL, Caldwell JH (1995) Expression and distribution of sodium channels in short- and long-term denervated rodent skeletal muscles. J Physiol 483(pt 1):109–118

    CAS  PubMed  Google Scholar 

  • McArdle JJ (1983) Molecular aspects of the trophic influence of nerve on muscle. Prog Neurobiol 21:135–198

    Article  CAS  PubMed  Google Scholar 

  • Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD, Hughes J, Richardson PJ, Mizuguchi K, Jackson AP (2000) Beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 97:2308–2313

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986) Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

    Article  CAS  PubMed  Google Scholar 

  • Pappone PA (1980) Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol 306:377–410

    CAS  PubMed  Google Scholar 

  • Patino GA, Claes LR, Lopez-Santiago LF, Slat EA, Dondeti RS, Chen C, O’Malley HA, Gray CB, Miyazaki H, Nukina N, Oyama F, De Jonghe P, Isom LL (2009) A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci 29:10764–10778

    Article  PubMed  Google Scholar 

  • Qin N, D’Andrea MR, Lubin ML, Shafaee N, Codd EE, Correa AM (2003) Molecular cloning and functional expression of the human sodium channel beta1B subunit, a novel splicing variant of the beta1 subunit. Eur J Biochem 270:4762–4770

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Curtis R, Lawson D, Gilbride K, Ge P, DiStefano PS, Silos-Santiago I, Catterall WA, Scheuer T (2001) Differential modulation of sodium channel gating and persistent sodium currents by the beta1, beta2, and beta3 subunits. Mol Cell Neurosci 18:570–580

    Article  CAS  PubMed  Google Scholar 

  • Rannou F, Droguet M, Giroux-Metges MA, Pennec Y, Gioux M, Pennec JP (2009) Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres. J Physiol 587:5249–5258

    Article  CAS  PubMed  Google Scholar 

  • Ravenscroft G, Nowak KJ, Jackaman C, Clement S, Lyons MA, Gallagher S, Bakker AJ, Laing NG (2007) Dissociated flexor digitorum brevis myofiber culture system—a more mature muscle culture system. Cell Motil Cytoskeleton 64:727–738

    Article  CAS  PubMed  Google Scholar 

  • Rich MM, Kraner SD, Barchi RL (1999) Altered gene expression in steroid-treated denervated muscle. Neurobiol Dis 6:515–522

    Article  CAS  PubMed  Google Scholar 

  • Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci USA 86:8170–8174

    Article  CAS  PubMed  Google Scholar 

  • Rossignol B, Gueret G, Pennec JP, Morel J, Rannou F, Giroux-Metges MA, Talarmin H, Gioux M, Arvieux CC (2008) Effects of chronic sepsis on contractile properties of fast twitch muscle in an experimental model of critical illness neuromyopathy in the rat. Crit Care Med 36:1855–1863

    Article  PubMed  Google Scholar 

  • Ruff RL (1992) Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers. Am J Physiol 262:C229–C234

    CAS  PubMed  Google Scholar 

  • Talon S, Giroux-Metges MA, Pennec JP, Guillet C, Gascan H, Gioux M (2005) Rapid protein kinase C-dependent reduction of rat skeletal muscle voltage-gated sodium channels by ciliary neurotrophic factor. J Physiol 565:827–841

    Article  CAS  PubMed  Google Scholar 

  • Wang ZM, Zheng Z, Messi ML, Delbono O (2005) Extension and magnitude of denervation in skeletal muscle from ageing mice. J Physiol 565:757–764

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Sladky JT, Kallen RG, Barchi RL (1991) TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron 7:421–427

    Article  CAS  PubMed  Google Scholar 

  • Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R (2003) Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23:7577–7585

    CAS  PubMed  Google Scholar 

  • Zebedin E, Sandtner W, Galler S, Szendroedi J, Just H, Todt H, Hilber K (2004) Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells. Am J Physiol Cell Physiol 287:C270–C280

    Article  CAS  PubMed  Google Scholar 

  • Zwerling SJ, Cohen SA, Barchi RL (1991) Analysis of protease-sensitive regions in the skeletal muscle sodium channel in vitro and implications for channel tertiary structure. J Biol Chem 266:4574–4580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors contributed to the different steps of analysis and interpretation of data, drafting, and discussion of the manuscript. All experiments were performed at the Laboratory of Physiology, EA 4326, School of Medicine, 22 Avenue Camille Desmoulins, 29238 Brest, France. The authors thank Laurent Corcos and Jean-François Clément for helpful assistance concerning real-time PCR and confocal observations. Public funding from the French Ministry of Research supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gueret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, J., Rannou, F., Talarmin, H. et al. Sodium Channel NaV1.5 Expression is Enhanced in Cultured Adult Rat Skeletal Muscle Fibers. J Membrane Biol 235, 109–119 (2010). https://doi.org/10.1007/s00232-010-9262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9262-5

Keywords

Navigation