Skip to main content
Log in

Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The serum- and glucocorticoid-inducible kinase SGK1 and the protein kinase PKB/Akt presumably phosphorylate and, by this means, activate the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3), which has in turn been shown to regulate transporters and channels. SGK1-regulated channels include the Ca2+ channel TRPV6, which is expressed in a variety of epithelial and nonepithelial cells including tumor cells. SGK1 and protein kinase B PKB/Akt foster tumor growth. The present study thus explored whether TRPV6 is regulated by PIKfyve. TRPV6 was expressed in Xenopus laevis oocytes with or without additional coexpression of constitutively active S422DSGK1, constitutively active T308D,S473DPKB, wild-type PIKfyve, and S318APIKfyve lacking the SGK1 phosphorylation site. TRPV6 activity was determined from the current (ICa) resulting from TRPV6-induced Ca2+ entry and subsequent activation of Ca2+-sensitive endogenous Cl channels. TRPV6 protein abundance in the cell membrane was determined utilizing immunohistochemistry and Western blotting. In TRPV6-expressing oocytes IH was increased by coexpression of S422DSGK1 and by T308D,S473DPKB. Coexpression of wild-type PIKfyve further increased IH in TRPV6 + S422DSGK1-expressing oocytes but did not significantly modify ICa in oocytes expressing TRPV6 alone. S318APIKfyve failed to significantly modify ICa in the presence and absence of S422DSGK1. S422DSGK1 increased the TRPV6 protein abundance in the cell membrane, an effect augmented by additional expression of wild-type PIKfyve. We conclude that PIKfyve participates in the regulation of TRPV6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berwick DC, Dell GC, Welsh GI et al (2004) Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J Cell Sci 117:5985–5993

    Article  CAS  PubMed  Google Scholar 

  • Boehmer C, Laufer J, Jeyaraj S et al (2008a) Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination. Cell Physiol Biochem 22:591–600

    Article  CAS  PubMed  Google Scholar 

  • Boehmer C, Palmada M, Klaus F et al (2008b) The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2. Cell Physiol Biochem 22:705–714

    Article  CAS  PubMed  Google Scholar 

  • Bohmer C, Palmada M, Kenngott C et al (2007) Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible kinase isoforms SGK1 and SGK3. FEBS Lett 581:5586–5590

    Article  CAS  PubMed  Google Scholar 

  • Bolanz KA, Hediger MA, Landowski CP (2008) The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 7:271–279

    Article  CAS  PubMed  Google Scholar 

  • Embark HM, Bohmer C, Palmada M et al (2004) Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases. Kidney Int 66:1918–1925

    Article  CAS  PubMed  Google Scholar 

  • Fukushima A, Aizaki Y, Sakuma K (2009) Short-chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and Caco-2 cells. J Nutr 139:20–25

    CAS  PubMed  Google Scholar 

  • Grahammer F, Henke G, Sandu C et al (2006) Intestinal function of gene-targeted mice lacking serum- and glucocorticoid-inducible kinase 1. Am J Physiol Gastrointest Liver Physiol 290:G1114–G1123

    Article  CAS  PubMed  Google Scholar 

  • Heine G, Niesner U, Chang HD et al (2008) 1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur J Immunol 38:2210–2218

    Article  CAS  PubMed  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276:26141–26147

    Article  CAS  PubMed  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K et al (2002) Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3, 5-P2 production for endomembrane integrity. J Biol Chem 277:9206–9211

    Article  CAS  PubMed  Google Scholar 

  • Ikonomov OC, Sbrissa D, Foti M et al (2003) PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14:4581–4591

    Article  CAS  PubMed  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3, 5-P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291:C393–C404

    Article  CAS  PubMed  Google Scholar 

  • Klaus F, Palmada M, Lindner R et al (2008) Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1. J Physiol 586:1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Klaus F, Laufer J, Czarkowski K et al (2009) PIKfyve-dependent regulation of the Cl channel ClC-2. Biochem Biophys Res Commun 381:407–411

    Article  CAS  PubMed  Google Scholar 

  • Lallet-Daher H, Roudbaraki M, Bavencoffe A, et al (2009) Intermediate-conductance Ca(2+)-activated K(+) channels (IK(Ca1)) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–1806

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Bohmer C, Palmada M et al (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178

    Article  CAS  PubMed  Google Scholar 

  • Lehen’kyi V, Flourakis M, Skryma R et al (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 26:7380–7385

    Article  PubMed  Google Scholar 

  • Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    CAS  PubMed  Google Scholar 

  • Rexhepaj R, Rotte A, Kempe DS et al (2009) Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone. Pflugers Arch 459:191–202

    Article  CAS  PubMed  Google Scholar 

  • Rotte A, Bhandaru M, Foller M et al (2009a) APC sensitive gastric acid secretion. Cell Physiol Biochem 23:133–142

    Article  CAS  PubMed  Google Scholar 

  • Rotte A, Mack AF, Bhandaru M et al (2009b) Pioglitazone induced gastric acid secretion. Cell Physiol Biochem 24:193–200

    Article  CAS  PubMed  Google Scholar 

  • Rusten TE, Rodahl LM, Pattni K et al (2006) Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 17:3989–4001

    Article  CAS  PubMed  Google Scholar 

  • Rutherford AC, Traer C, Wassmer T et al (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957

    Article  CAS  PubMed  Google Scholar 

  • Sandu C, Artunc F, Grahammer F et al (2007) Role of the serum and glucocorticoid inducible kinase SGK1 in glucocorticoid stimulation of gastric acid secretion. Pflugers Arch 455:493–503

    Article  CAS  PubMed  Google Scholar 

  • Sato JD, Chapline MC, Thibodeau R et al (2007) Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1). Cell Physiol Biochem 20:91–98

    CAS  PubMed  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274:21589–21597

    Article  CAS  PubMed  Google Scholar 

  • Sbrissa D, Ikonomov OC, Deeb R et al (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277:47276–47284

    Article  CAS  PubMed  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J et al (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865

    Article  CAS  PubMed  Google Scholar 

  • Seebohm G, Strutz-Seebohm N, Birkin R et al (2007) Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 100:686–692

    Article  CAS  PubMed  Google Scholar 

  • Semenova SB, Vassilieva IO, Fomina AF, et al (2009) Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol 296:C1098–C1104

    Article  CAS  PubMed  Google Scholar 

  • Shaw JR, Sato JD, Vander Heide J et al (2008) The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus. Cell Physiol Biochem 22:69–78

    Article  CAS  PubMed  Google Scholar 

  • Shojaiefard M, Strutz-Seebohm N, Tavare JM et al (2007) Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 359:843–847

    Article  CAS  PubMed  Google Scholar 

  • Strutz-Seebohm N, Seebohm G, Mack AF et al (2005) Regulation of GluR1 abundance in murine hippocampal neurones by serum- and glucocorticoid-inducible kinase 3. J Physiol 565:381–390

    Article  CAS  PubMed  Google Scholar 

  • Strutz-Seebohm N, Gutcher I, Decher N et al (2007a) Comparison of potent Kv1.5 potassium channel inhibitors reveals the molecular basis for blocking kinetics and binding mode. Cell Physiol Biochem 20:791–800

    Article  CAS  PubMed  Google Scholar 

  • Strutz-Seebohm N, Shojaiefard M, Christie D et al (2007b) PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 20:729–734

    Article  CAS  PubMed  Google Scholar 

  • Stumpf T, Zhang Q, Hirnet D et al (2008) The human TRPV6 channel protein is associated with cyclophilin B in human placenta. J Biol Chem 283:18086–18098

    Article  CAS  PubMed  Google Scholar 

  • Takumida M, Ishibashi T, Hamamoto T et al (2009) Age-dependent changes in the expression of klotho protein, TRPV5 and TRPV6 in mouse inner ear. Acta Otolaryngol 25:1–11

    Google Scholar 

  • Thyagarajan B, Lukacs V, Rohacs T (2008) Hydrolysis of phosphatidylinositol 4,5-bisphosphate mediates calcium-induced inactivation of TRPV6 channels. J Biol Chem 283:14980–14987

    Article  CAS  PubMed  Google Scholar 

  • Thyagarajan B, Benn BS, Christakos S et al (2009) Phospholipase C-mediated regulation of transient receptor potential vanilloid 6 channels: implications in active intestinal Ca2+ transport. Mol Pharmacol 75:608–616

    Article  CAS  PubMed  Google Scholar 

  • van de Graaf SF, Hoenderop JG, Bindels RJ (2006) Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 290:F1295–F1302

    Article  PubMed  Google Scholar 

  • Watson RT, Pessin JE (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci 31:215–222

    Article  CAS  PubMed  Google Scholar 

  • Welsh GI, Hers I, Berwick DC et al (2005) Role of protein kinase B in insulin-regulated glucose uptake. Biochem Soc Trans 33:346–349

    Article  CAS  PubMed  Google Scholar 

  • Wulff P, Vallon V, Huang DY et al (2002) Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 110:1263–1268

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of E. Faber and the meticulous preparation of the manuscript by T. Loch and L. Subasic. This study was supported by the Deutsche Forschungsgemeinschaft (GK 1302, SFB 773). S422DSGK1 and PKB cDNA were kindly provided by Sir Philip Cohen, College of Life Sciences, and Sir James Black Centre, University of Dundee; PIKfyve cDNA, by Jeremy M. Tavaré, University of Bristol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sopjani, M., Kunert, A., Czarkowski, K. et al. Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve. J Membrane Biol 233, 35–41 (2010). https://doi.org/10.1007/s00232-009-9222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9222-0

Keywords