Skip to main content
Log in

Concentration-Dependent Effects on Intracellular and Surface pH of Exposing Xenopus oocytes to Solutions Containing NH3/NH4 +

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Others have shown that exposing oocytes to high levels of \( {\text{NH}}_{ 3} /{\text{NH}}_{ 4}{}^{ + } \)(10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM \( {\text{NH}}_{ 3} /{\text{NH}}_{ 4}{}^{ + } \) causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both \( {\text{NH}}_{ 3} /{\text{NH}}_{ 4}{}^{ + } \) levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled \( {\text{NH}}_{ 3} /{\text{NH}}_{ 4}{}^{ + } \) show no significant formation of glutamine but substantial \( {\text{NH}}_{ 3} /{\text{NH}}_{ 4}{}^{ + } \) accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In our analysis, we assume that NH3 and NH4 + move in the same direction. If they should move in opposite directions, then pH would always fall on the side of the membrane toward which NH4 + moves, and would always rise on the opposite side.

  2. We cannot rule out the possibility that the NH4 + conductance is immediately high, but that other conductances—also initially high—gradually decline to allow Vm to approach \( {\text{E}}_{{{\text{NH}}_{ 4}{}^ + }} \).

  3. The removal of NH3/NH4 + causes neither a fall in pHi nor a rise in pHS that substantially overshoots the initial value.

  4. Assuming that the NH4 +-conductive pathway remained activate and that substantial NH4 + were present in the cytosol, the removal of extracellular NH4 + would create a diffusion potential that would drive Vm to well below the pre-NH3/NH4 + value. Instead, we observed a Vm minimal undershoot that decayed rapidly, presumably reflecting either NH4 + efflux per se, or NH3 efflux followed by the cytosolic reaction NH4 + → NH3 + H+. We have no data that bear on the decay of the presumed NH4 + conductance.

References

  • Aickin CC, Thomas RC (1977) An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol (Lond) 273:295–316

    CAS  Google Scholar 

  • Andrade SL, Dickmanns A, Ficner R, Einsle O (2005) Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci USA 102:14994–14999

    Article  PubMed  CAS  Google Scholar 

  • Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Chérif-Zahar B, Planelles G (2004) NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein. J Biol Chem 279:15975–15983

    Article  PubMed  CAS  Google Scholar 

  • Bakouh N, Benjelloun F, Cherif-Zahar B, Planelles G (2006) The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus Clin Biol 13:139–146

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, De Weer P (1976a) Active proton transport stimulated by CO2/HCO3 blocked by cyanide. Nature 259:240–241

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, De Weer P (1976b) Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors. J Gen Physiol 67:91–112

    Article  PubMed  CAS  Google Scholar 

  • Burckhardt BC, Frömter E (1992) Pathways of NH3/NH4 + permeation across Xenopus laevis oocyte cell membrane. Pflügers Arch 420:83–86

    Article  PubMed  CAS  Google Scholar 

  • Chesler M (1986) Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon Marinus. J Physiol (Lond) 381:241–261

    CAS  Google Scholar 

  • Conroy MJ, Durand A, Lupo D, Li XD, Bullough PA, Winkler FK, Merrick M (2007) The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 104:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • De Hemptinne A, Huguenin F (1984) The influence of muscle respiration and glycolysis on surface and intracellular pH in fibres of the rat soleus. J Physiol 347:581–592

    PubMed  Google Scholar 

  • Endeward V, Musa-Aziz R, Cooper GJ, Chen L, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006) Evidence that Aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20:1974–1981

    Article  PubMed  CAS  Google Scholar 

  • Fabiny JM, Jayakumar A, Chinault AC, Barnes EM Jr (1991) Ammonium transport in Escherichia coli: localization and nucleotide sequence of the amtA gene. J Gen Microbiol 137(Pt 4):983–989

    PubMed  CAS  Google Scholar 

  • Fagotto F (1995) Regulation of yolk degradation, or how to make sleepy lysosomes. J Cell Sci 108(Pt 12):3645–3647

    PubMed  CAS  Google Scholar 

  • Fagotto F, Maxfield FR (1994a) Changes in yolk platelet pH during Xenopus laevis development correlate with yolk utilization. A quantitative confocal microscopy study. J Cell Sci 107:3325–3337

    PubMed  CAS  Google Scholar 

  • Fagotto F, Maxfield FR (1994b) Yolk platelets in Xenopus oocytes maintain an acidic internal pH which may be essential for sodium accumulation. J Cell Biol 125:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Grichtchenko II, Choi I, Zhong X, Bray-Ward P, Russell JM, Boron WF (2001) Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl-HCO3 exchanger. J Biol Chem 276:8358–8363

    Article  PubMed  CAS  Google Scholar 

  • Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR - application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594

    Article  CAS  Google Scholar 

  • Harvey EN (1911) Studies on the permeability of cells. J Exp Zool 10:507–556

    Article  Google Scholar 

  • Jacobs MH (1922) The influence of ammonium salts on cell reaction. J Gen Physiol 5:181–188

    Article  CAS  Google Scholar 

  • Kanamori K, Ross BD, Tropp J (1995) Selective, in vivo observation of [5-N-15]glutamine amide protons in rat-brain by H-1-N-15 heteronuclear multiple-quantum-coherence transfer NMR. J Magnet Reson Ser B 107:107–115

    Article  CAS  Google Scholar 

  • Keicher E, Meech R (1994) Endogenous Na+ -K+ (or NH4 +)-2Cl cotransport in Rana oocytes; anomalous effect of external NH4 + on pHi. J Physiol 475:45–57

    PubMed  CAS  Google Scholar 

  • Khademi S, Stroud RM (2006) The Amt/MEP/Rh family: structure of AmtB and the mechanism of ammonia gas conduction. Physiology (Bethesda) 21:419–429

    CAS  Google Scholar 

  • Khademi S, O’Connell J, Remis J, Robles-Colmenares Y, Miericke LJW, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 angstrom. Science 305:1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Kikeri D, Sun A, Zeidel ML, Hebert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    Article  PubMed  CAS  Google Scholar 

  • Kirsten JH, Xiong Y, Dunbar AJ, Rai M, Singleton CK (2005) Ammonium transporter C of Dictyostelium discoideum is required for correct prestalk gene expression and for regulating the choice between slug migration and culmination. Dev Biol 287:146–156

    Article  PubMed  CAS  Google Scholar 

  • Kirsten JH, Xiong Y, Davis CT, Singleton CK (2008) Subcellular localization of ammonium transporters in Dictyostelium discoideum. BMC Cell Biol 9:71

    Article  PubMed  Google Scholar 

  • Lu J, Daly CM, Parker MD, Gill HS, Piermarini PM, Pelletier MF, Boron WF (2006) Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. J Biol Chem 281:19241–19250

    Article  PubMed  CAS  Google Scholar 

  • Musa-Aziz R, Chen L, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB and RhAG. Proc Natl Acad Sci USA (in press)

  • Nuccitelli R, Webb DJ, Lagier ST, Matson GB (1981) 31P NMR reveals increased intracellular pH after fertilization in Xenopus eggs. Proc Natl Acad Sci USA 78:4421–4425

    Article  PubMed  CAS  Google Scholar 

  • Overton E (1897) Über die osmotischen Eigenschaften der Zelle in ihrer Bedeutung fur die Toxicologie und Pharmacologie. Z Phys Chem 22:189–209

    CAS  Google Scholar 

  • Parker MD, Musa-Aziz R, Rojas JD, Choi I, Daly CM, Boron WF (2008) Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl–self-exchange activity. J Biol Chem 283:12777–12788

    Article  PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    Article  PubMed  CAS  Google Scholar 

  • Piermarini PM, Choi I, Boron WF (2007) Cloning and characterization of an electrogenic Na/HCO3 cotransporter from the squid giant fiber lobe. Am J Physiol Cell Physiol 292:C2032–C2045

    Article  PubMed  CAS  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  PubMed  CAS  Google Scholar 

  • Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387:409–413

    Article  PubMed  CAS  Google Scholar 

  • Romero MF, Fong P, Berger UV, Hediger MA, Boron WF (1998) Cloning and functional expression of rNBC, an electrogenic Na+/HCO3 cotransporter from rat kidney. Am J Physiol 274:F425–F432

    PubMed  CAS  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—waltz–16. J Magnet Reson 52:335–338

    CAS  Google Scholar 

  • Singh SK, Binder HJ, Geibel JP, Boron WF (1995) An apical permeability barrier to NH3/NH4 + in isolated, perfused colonic crypts. Proc Natl Acad Sci USA 92:11573–11577

    Article  PubMed  CAS  Google Scholar 

  • Singleton CK, Kirsten JH, Dinsmore CJ (2006) Function of ammonium transporter A in the initiation of culmination of development in Dictyostelium discoideum. Eukaryot Cell 5:991–996

    Article  PubMed  CAS  Google Scholar 

  • Soupene E, Lee H, Kustu S (2002) Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci USA 99:3926–3931

    Article  PubMed  CAS  Google Scholar 

  • Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, Boron WF (2006) The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 291:C788–C801

    Article  PubMed  CAS  Google Scholar 

  • Waisbren SJ, Geibel JP, Modlin IM, Boron WF (1994) Unusual permeability properties of gastric gland cells. Nature 368:332–335

    Article  PubMed  CAS  Google Scholar 

  • Warburg EJ (1922) Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions. A contribution to the theory of the equation of Lawrence J. Henderson and K.A. Hasselbalch. Biochem Z 16:153–340

    CAS  Google Scholar 

  • Webb DJ, Nuccitelli R (1981) Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage. J Cell Biol 91:562–567

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Kostrewa D, Berneche S, Winkler FK, Li XD (2004) The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci USA 101:17090–17095

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Office of Naval Research (1N000140810532 to W·F.B.) and the National Institutes of Health (NINDS 1 P30-NS052519 to K.L.B.). At Yale University, we thank Duncan Wong for computer support. We thank Mark D. Parker for helpful discussions, Dale Huffman for engineering assistance, and Charleen Bertolini for administrative support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raif Musa-Aziz or Walter F. Boron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musa-Aziz, R., Jiang, L., Chen, LM. et al. Concentration-Dependent Effects on Intracellular and Surface pH of Exposing Xenopus oocytes to Solutions Containing NH3/NH4 + . J Membrane Biol 228, 15–31 (2009). https://doi.org/10.1007/s00232-009-9155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9155-7

Keywords

Navigation