Skip to main content
Log in

Ageing-Induced Alterations in Lipid/Phospholipid Profiles of Rat Brain and Liver Mitochondria: Implications for Mitochondrial Energy-Linked Functions

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Effects of ageing on the lipid/phospholipid profile of brain and liver mitochondria from rats were examined. In the brain mitochondria the contents of total phospholipid (TPL) and cholesterol (CHL) increased with simultaneous increase in the TPL/CHL (mole:mole) ratio. The proportion and contents of lysophospholipid (Lyso), sphingomyelin (SPM), phosphatidylinositol (PI), phosphatidylserine (PS) and diphosphatidylglycerol (DPG) components increased, with maximal increases seen for PS and PI; phosphatidylcholine (PC) and phosphatidylethanolamine (PE) components registered decrease. In the liver mitochondria contents of TPL and CHL increased. However, the TPL/CHL (mole:mole) ratio was not altered. Lyso, PI and PS increased. However, the magnitude of increase was competitively lower; PE and DPG decreased. SPM and PC did not change as a consequence of ageing. These changes altered the contents of individual phospholipids in the two membrane systems. Respiration with glutamate, pyruvate + malate, succinate and ascorbate + N,N,N’,N’-tetramethyl-p-phenylenediamine was significantly impaired in brain mitochondria from old animals. For liver mitochondria the respiratory activity declined with glutamate and succinate. Correlation studies by regression analysis revealed that the lipid/phospholipid classes regulate respiratory function differently in the mitochondria from the two tissues. The respiration-related parameters in the brain mitochondria were dependent on multiple lipid/phospholipid components, and the process of regulation was complex compared to the liver mitochondrial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ando S, Tanaka Y, Toyoda nee Ono Y, Kon K, Kawashima S (2002) Turnover of synaptic membranes: age-related changes and modulation by dietary restriction. J Neurosci Res 70:290–297

    Article  PubMed  CAS  Google Scholar 

  • Aureli T, Di Cocco ME, Capuani G, Ricciolini R, Manetti C, Miccheli A, Conti F (2000) Effect of long-term feeding with acetyl-l-carnitine on the age-related changes in rat brain lipid composition: a study by 31P NMR spectroscopy. Neurochem Res 25:395–399

    Article  PubMed  CAS  Google Scholar 

  • Bangur CS, Howland JL, Katyare SS (1995) Thyroid hormone treatment alters phospholipid composition and membrane fluidity of rat brain mitochondria. Biochem J 305:29–32

    PubMed  CAS  Google Scholar 

  • Baranowska B, Wolinska-Witort E, Bik W, Baranowska-Bik A, Martynska L, Chmielowska M (2007) Evaluation of neuroendocrine status in longevity. Neurobiol Aging 28:774–783

    Article  PubMed  CAS  Google Scholar 

  • Bartlett GR (1954) Phosphorous assay in column chromatography. J Biol Chem 34:466– 468

    Google Scholar 

  • Bourre JM (2004) Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging 8:163–174

    PubMed  CAS  Google Scholar 

  • Carver JD, Benford VJ, Han B, Cantor AB (2001) The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull 56:79–85

    Article  PubMed  CAS  Google Scholar 

  • Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822:1–42

    PubMed  CAS  Google Scholar 

  • Delion S, Chalon S, Guilloteau D, Lejeune B, Besnard JC, Durand G (1997) Age-related changes in phospholipid fatty acid composition and monoaminergic neurotransmission in the hippocampus of rats fed a balanced or an n-3 polyunsaturated fatty acid-deficient diet. J Lipid Res 38:680–689

    PubMed  CAS  Google Scholar 

  • Dugan RE, Porter JW (1977) Hormonal regulation of cholesterol synthesis. In: Litwack G (ed), Biochemical functions of hormones, vol 4. Academic Press, New York, pp 197–247

    Google Scholar 

  • Elmlinger MW, Dengler T, Weinstock C, Kuehnel W (2003) Endocrine alterations in the aging male. Clin Chem Lab Med 41:934–941

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  PubMed  CAS  Google Scholar 

  • Favreliere S, Stadelmann-Ingrand S, Huguet F, De Javel D, Piriou A, Tallineau C, Durand G (2000) Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol Aging 21:653–660

    Article  CAS  Google Scholar 

  • Favreliere S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriou A, Durand G (2003) DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiol Aging 24:233–243

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Gil L (1984) Nutritional effects on mitochondrial bioenergetics: alterations in oxidative phosphorylation by rat liver mitochondria. Biochem J 218:61–67

    PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GHA (1957) Simple method for isolation and purification of total phospholipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Giusto NM, Roque ME, Ilincheta de Boschero MG (1992) Effects of aging on the content, composition and synthesis of sphingomyelin in the central nervous system. Lipids 27:835–839

    Article  PubMed  CAS  Google Scholar 

  • Giusto NM, Salvador GA, Castagnet PI, Pasquare SJ, Ilincheta de Boschero MG (2002) Age-associated changes in central nervous system glycerolipid composition and metabolism. Neurochem Res 27:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Grinna SL (1977a) Age related changes in the lipids of the microsomal and the mitochondrial membranes of rat liver and kidney. Mech Ageing Dev 6:197–205

    Google Scholar 

  • Grinna SL (1977b) Turnover of lipid components in liver microsomes, mitochondria and plasma membrane of 6-, 12- and 24-month old rats. Mech Ageing Dev 6:453–459

    Google Scholar 

  • Hansford GR (1983) Bioenergetics in ageing. Biochem Biophys Acta 726:41–80

    PubMed  CAS  Google Scholar 

  • Hostetler KY (1991) Effect of thyroxine on the activity of mitochondrial cardiolipin synthase in rat liver. Biochem Biophys Acta 1086:139–140

    PubMed  CAS  Google Scholar 

  • Ilincheta de Boschero MG, Roque ME, Salvador GA, Giusto NM (2000) Alternative pathways for phospholipid synthesis in different brain areas during aging. Exp Gerontol 35:653–668

    Article  Google Scholar 

  • Katewa SD, Katyare SS (2004) Treatment with antimalarials adversely affects the oxidative energy metabolism in rat liver mitochondria. Drug Chem Toxicol 27:41–53

    Article  PubMed  CAS  Google Scholar 

  • Katyare SS, Satav JG (1989) Impaired mitochondrial energy metabolism following paracetamol-induced hepatotoxicity in the rat. Br J Pharmacol 96:51–58

    PubMed  CAS  Google Scholar 

  • Katyare SS, Balasubramanian S, Parmar DV (2003) Effect of corticosterone treatment on oxidative energy metabolism in developing rat brain. Exp Neurol 183:241–248

    Article  PubMed  CAS  Google Scholar 

  • Katyare SS, Rajan RR (2005) Influence of thyroid hormone treatment on the respiratory activity of cerebral mitochondria from hypothyroid rats. A critical re-assessment. Exp Neurol 195:416–422

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Woldgiorgis G, Elson CE, Shrago E (1988a) Age-related changes in respiration coupled to phosphorylation. I. Hepatic mitochondria. Mech Ageing Dev 46:263–277

    Google Scholar 

  • Kim JH, Shrago E, Elson CE (1988b) Age-related changes in respiration coupled to phosphorylation. III. Cardiac mitochondria. Mech Ageing Dev 46:279–290

    Google Scholar 

  • Lopez GH, Ilincheta de Boschero MG, Castagnet PI, Giusto NM (1995) Age-associated changes in the content and fatty acid composition of brain glycerophospholipids. Comp Biochem Physiol B Biochem Mol Biol 112:331–343

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–272

    PubMed  CAS  Google Scholar 

  • Masella R, Pignatelli E, Marinelli T, Modesti D, Verna R, Cantafora A (1995) Age- related variations in plasma and liver lipids of Yoshida rats: a comparison with Wistar rats. Comp Biochem Physiol 111:319–327

    CAS  Google Scholar 

  • McDaniel MA, Maier SF, Einstein GO (2003) “Brain-specific” nutrients: a memory cure? Nutrition 19:957–975

    Article  PubMed  CAS  Google Scholar 

  • Mourdjeva M, Popova Z, Kyurkchiev D, Kontinopoulou K, Altankova I, Kehayov I, Kyurkchiev S (2006) Progesterone-modulated phosphatidylserine externalization in apoptosis and activation of Jurkat cells. Am J Reprod Immunol 56:249–257

    Article  PubMed  CAS  Google Scholar 

  • Moreira DG, Marassi MP, Correa da Costa VM, Carvalho DP, Rosenthal D (2005) Effects of ageing and pharmacological hypothyroidism on pituitary-thyroid axis of Dutch-Miranda and Wistar rats. Exp Gerontol 40:330–334

    Article  PubMed  CAS  Google Scholar 

  • Murphy EJ, Schapiro MB, Rapoport SI, Shetty HU (2000) Phospholipid composition and levels are altered in Down syndrome brain. Brain Res 867:9–18

    Article  PubMed  CAS  Google Scholar 

  • Pandya JD, Dave KR, Katyare SS (2004) Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin. Lipids Health Dis 22:3–13

    Google Scholar 

  • Parmar DV, Khandkar MA, Pereira L, Bangur CS, Katyare SS (1995) Thyroid hormones alter Arrhenius kinetics of succinate-2,6-dichloroindophenol reductase, and the lipid composition and membrane fluidity of rat liver mitochondria. Eur J Biochem 230:576–581

    Article  PubMed  CAS  Google Scholar 

  • Pasquare SJ, Ilincheta de Boschero MG, Giusto NM (2001) Aging promotes a different phosphatidic acid utilization in cytosolic and microsomal fractions from brain and liver. Exp Gerontol 36:1387–1401

    Article  PubMed  CAS  Google Scholar 

  • Pasquini JM, Faryra de Raveglia I, Capitman N, Soto EF (1980) Differential effect of l-thyroxine on phospho lipid biosynthesis in mitochondria and microsomal fraction. Biochem J 186:127–133

    PubMed  CAS  Google Scholar 

  • Patel SP, Katyare SS (2006a) Effect of alloxan-diabetes and subsequent treatment with insulin on lipid/phospholipid composition of rat brain microsomes and mitochondria. Neurosci Lett 399:129–134

    Google Scholar 

  • Patel MA, Katyare SS (2006b) Treatment with dehydroepiandrosterone (DHEA) stimulates oxidative energy metabolism in the cerebral mitochondria. A comparative study of effects in old and young adult rats. Neurosci Lett 402:131–136

    Google Scholar 

  • Patel MA, Modi HR, Katyare SS (2007) Stimulation of oxidative energy metabolism in liver mitochondria from old and young adult rats by treatment with dehydroepiandrosterone (DHEA). A comparative study. Age 29:41–49

    Google Scholar 

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci 59:478–493

    PubMed  Google Scholar 

  • Ruggiero FM, Landriscina C, Gnoni GV, Quagliariello E (1984) Lipid composition of liver mitochondria and microsomes in hyperthyroid rats. Lipids 19:171–178

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero FM, Cafagna F, Petruzzella V, Gadaleta MN, Quagliariello E (1992) Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem 59:487–491

    Article  PubMed  CAS  Google Scholar 

  • Skipski VP, Barclay M, Barclay RK, Fetzer VA, Good JJ, Archibald FM (1967) Lipid composition of human serum lipoprotein. Biochem J 104:340–361

    PubMed  CAS  Google Scholar 

  • Soderberg M, Edlund C, Kristensson K, Dallner G (1990) Lipid compositions of different regions of the human brain during aging. J Neurochem 54:415–423

    Article  PubMed  CAS  Google Scholar 

  • Toescu EC, Myronova N, Verkhratsky A (2000) Age-related structural and functional changes of brain mitochondria. Cell Calcium 28:329–338

    Article  PubMed  CAS  Google Scholar 

  • Viani P, Cervato G, Fiorilli A, Cestaro B (1991) Age-related differences in synaptosomal peroxidative damage and membrane properties. J Neurochem 56:253–258

    Article  PubMed  CAS  Google Scholar 

  • Zlatkis A, Zak B, Boyle JA (1953) A new method for the determination of serum cholesterol. J Lab Clin Med 41:486–492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiren R. Modi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modi, H.R., Katyare, S.S. & Patel, M.A. Ageing-Induced Alterations in Lipid/Phospholipid Profiles of Rat Brain and Liver Mitochondria: Implications for Mitochondrial Energy-Linked Functions. J Membrane Biol 221, 51–60 (2008). https://doi.org/10.1007/s00232-007-9086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9086-0

Keywords

Navigation