Abstract
This review summarizes what is currently known about urea transporters in fishes in the context of their physiology and evolution within the vertebrates. The existence of urea transporters has been investigated in red blood cells and hepatocytes of fish as well as in renal and branchial cells. Little is known about urea transport in red blood cells and hepatocytes, in fact, urea transporters are not believed to be present in the erythrocytes of elasmobranchs nor in teleost fish. What little physiological evidence there is for urea transport across fish hepatocytes is not supported by molecular evidence and could be explained by other transporters. In contrast, early findings on elasmobranch renal urea transporters were the impetus for research in other organisms. Urea transport in both the elasmobranch kidney and gill functions to retain urea within the animal against a massive concentration gradient with the environment. Information on branchial and renal urea transporters in teleost fish is recent in comparison but in teleosts urea transporters appear to function for excretion and not retention as in elasmobranchs. The presence of urea transporters in fish that produce a copious amount of urea, such as elasmobranchs and ureotelic teleosts, is reasonable. However, the existence of urea transporters in ammoniotelic fish is curious and could likely be due to their ability to manufacture urea early in life as a means to avoid ammonia toxicity. It is believed that the facilitated diffusion urea transporter (UT) gene family has undergone major evolutionary changes, likely in association with the role of urea transport in the evolution of terrestriality in the vertebrates.



Similar content being viewed by others
References
Alsop D.H., Kieffer J.D., Wood C.M. 1999. The effects of temperature and swimming speed on instantaneous fuel use and nitrogenous waste excretion of the Nile tilapia. Physiol. Biochem. Zool. 72:474–483
Alsop D.H., Wood C.M. 1997. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 200:2337–2346
Anderson P.M. 2001. Uera and glutamine synthesis: environmental influences on nitrogen excretion. In: P.A. Wright P.M. Anderson, eds Nitrogen Excretion. Academic Press, San Diego pp. 239–278
Anderson P.M., Walsh P.J. 1995. Subcellular localization and biochemical properties of the enzymes of carbamoyl phophate and urea synthesis in the batrachoidid fishes Opsanus beta, Opsanus tau and Porichthys notatus. J. Exp. Biol. 198:755–766
Beamish F.W.H., Thomas E. 1984. Effects of dietary protein and lipid on nitrogen losses in rainbow trout (Salmo gairdneri). Aquaculture. 41:359–371
Bishop S.H., Campbell J.W. 1965. Arginine and urea biosynthesis in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 15:51–71
Boylan J. 1967. Gill permeability in Squalus acanthias. In: P.W. Gilbert R.F. Mathewson D.P. Rall, editor. Sharks, skates and rays. Johns Hopkins University Press, Baltimore pp. 197–206
Boylan J.W. 1972. A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol. 42A:27–30
Bucking C., Wood C.M. 2004. Does urea reabsorption occur via the glucose pathway in the kidney of the freshwater rainbow trout? Fish Physiol. Biochem. 30:1–12
Carby J.M.N., Gorelich-Feldman D.A., Kozono D., Praetorius J., Nielsen S., Agre P. 2003. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Nat. Acad. Sci. 100:2945–2950
Carlson S.R., Goldstein L. 1997. Urea transport across the cell membrane of skate erythrocytes. J. Exp. Zool. 277:275–282
Carrasco G.A., Van De Kar L.D. 2003. Neuroendocrine pharmacology of stress. European J. Pharmacol. 463:235–272
Chadwick T.D., Wright P.A. 1999. Nitrogen excretion and expression of urea cycle enzymes in the Atlantic cod (Gadus morhus L.): a comparison of early life stages with adults. J. Exp. Biol. 202:2653–2662
Chan D.K.O., Wong T.M. 1977. Physiological adjustements to dilution of the external medium in the lip-shark Hamiscyllium plagiosum (Bennett). I. Size of body compartments and osmolute composition. J. Exp. Zool. 200:71–84
Chaouloff F. 1993. Physiolpharmacological interactions between stress hormones and central serotonergic systems. Brain Research Reviews. 18:1–32
Chou C.L., Knepper M.A. 1989. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am. J. Physiol. 257:F359–F365
Coe M.J. 1966. The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. Acta. Trop. 23:146–177
Cohen S., Lewis H.B. 1949. The nitrogenous metabolism of the earthworm (Lumbricus terrestris). J. Biol. Chem. 180:79–91
Cooper R.A., Morris S. 1998. Osmotic and haemotological response of the Port Jackson shark, Heterodontus portusjacksoni and the common stingaree Trygonoptera testacea upon exposure to diluted sea water. Mar. Biol. 132:29–42
de Vlaming V.L., Sage M. 1973. Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comp. Biochem. Physiol. 45A:31–44
Denis W. 1913. Metabolism studies on cold-blooded animals. II The blood and urine of fish. J. Biol. Chem. 16:389–393
Dépêche J., Gilles R., Daufresne S., Chiapello H. 1979. Urea content and urea production via the ornithine-urea cycle pathway during the ontogenic development of two teleost fishes. Comp. Biochem. Physiol. 63A:51–56
Fenton R., Hewitt J.E., Howorth A., Cottingham C.A., Smith C.P. 1999. The murine urea transporter genes S1c14a1 and S1c14a2 occur in tandem on chromosome 18. Cytogen. Cellular. Genet. 87:95–96
Fines G.A., Ballantyne J.S., Wright P.A. 2001. Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch. Am. J. Physiol. 280:R16–R24
Forster R.P., Goldstein L. 1976. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am. J. Physiol. 230:925–931
Friedman P.A., Hebert S.C. 1990. Diluting segment in kidney of dogfish shark. I. Localization and characterization of chloride absorption. Am. J. Physiol. 258:R398–R408
Galluci E., Micell S., Lippe C. 1971. Non-electrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochim. 79:881–887
Goldstein L., Forster R.P. 1971a. Osmoregulation and urea metabolism in the little skate Raja erinacea. Am. J. Physiol. 220:742–746
Goldstein L., Forster R.P. 1971b. Urea biosynthesis and excretion in freshwater and marine elasmobranchs. Comp. Biochem. Physiol. 39B:415–421
Griffith R.W. 1991. Guppies, toadfish, lungfish, coelacanths and frogs - a scenario for the evolution of urea retention in fishes. Environ. Biol. Fish. 32:199–218
Hays R.M., Levine S.D., Myers J.D., Heinemann H.O., Kaplan M.A., Franki N., Berliner H. 1977. Urea transport in the dogfish kidney. J. Exp. Zool. 199:309–316
Hickman C.P., Trump B.F. 1969. The kidney. In: W.S. Hoar D.J. Randall, editors.Fish Physiology. Academic Press, New York pp. 91–239
Höglund E., Balm P.H.M., Winberg S. 2002. Stimulatory and inhibitory effects of 5-HT1A receptors on adrenocorticotropic hormone and cortisol secretion in an teleost fish, the Arctic charr (Salvelinus alpinus). Neurosci. Let. 324:193–196
Hopkins T.E., Wood C.M., Walsh P.J. 1995. Interactions of cortisol and nitrogen metabolism in the ureogenic gulf toadfish Opsanus beta. J. Exp. Biol. 198:2229–2235
Hyodo S., Katoh F., Kaneko T., Takei Y. 2004. A facilitative urea transporter is localized in the renal collecting tubule of the dogfish Triakis scyllia. J. Exp. Biol. 207:347–356
Isozaki T., Gillin A.G., Swanson C.E., Sands J.M. 1994a. Protein restriction sequentially induces new urea transport processes in rat initial IMCD. Am. J. Physiol. 266:F756–F761
Isozaki T., Lea J.P., Tumlin J.A., Sands J.M. 1994b. Sodium-dependent net urea transport in rat initial inner medullary collecting ducts. J. Clin. Invest. 94:1513–1517
Isozaki T., Verlander J.W., Sands J.M. 1993. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J. Clin. Invest. 92:2448–2457
Jenkinson C.P., Grody W.W., Cederbaum S.D. 1996. Comparative properties of arginases. Comp. Biochem. Physiol. 114B:107–132
Kajimura, M., Walsh, P.J., Mommsen, T.P., Wood, C.M. 2006. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding. Physiol. Biochem. Zool. 79: 603–613
Kato A., Sands J.M. 1998. Evidence for sodium-dependent active urea secretion in the deepest subsegment of the rat inner medullary collecting duct. J. Clin. Invest. 101:423–428
Kempton R.T. 1953. Studies of the elasmobranch kidney II. Reabsorption of urea by the smooth muscle of dogfish, Mustelis canis. Biol. Bull. 104:45–56
Klein J.D., Timmer R.T., Rouillard P., Bailey J.L., Sands J.M. 1999. UT-A urea transporter protein expressed in liver: upregulation by uremia. J. Am. Soc. Nephrol. 10:2076–2083
Knepper M.A., Danielson R.A., Saidel G.M., Johnston K.H. 1975. Effects of dietary protein restriction and glucocorticoid administration on urea excretion in rats. Kidney Int. 8:303–315
Korsgaard B. 1994. Nitrogen distribution and excretion during embryonic postyolk sac development in Zoarces viviparus. J. Comp. Physiol. 164B:42–46
Lacy E.R., Reale E., Schlusselberg D.S., Smith W.K., Woodward D.J. 1985. A renal countercurrent system in marine elasmobranch fish: a computer aided reconstruction. Science 227:1351–1354
Lauff R.F., Wood C.M. 1996. Respiratory gas exchange, nitrogenous waste excretion, and fuel usage during aerobic swimming in juvenile rainbow trout. J. Comp. Physiol. 166B:501–509
Laurent P., Wood C.M., Wang Y., Perry S.F., Gilmour K.M., Part P., Chevalier C., West M., Walsh P.J. 2001. Intracellular vesicular trafficking in the gill epithelium of urea-excreting fish. Cell Tissue Res. 303:197–210
Macey R.I., Yousef L.W. 1988. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am. J. Physiol. 254:C669–C674
McDonald M.D., Grosell M., Wood C.M., Walsh P.J. 2003. Branchial and renal handling of urea in the gulf toadfish, Opsanus beta: the effect of exogenous urea loading. Comp. Biochem. Physiol. 134A:763–776
McDonald M.D., Walsh P.J. 2004. Dogmas and controversies in the handling of nitrogenous wastes: 5-HT2A-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish, Opsanus beta. J. Exp. Biol. 207:2003–2010
McDonald M.D., Walsh P.J., Wood C.M. 2002. Branchial and renal excretion of urea and urea analogues in the plainfin midshipman, Porichthys notatus. J. Comp. Physiol. 172B:699–712
McDonald M.D., Wood C.M. 1998. Reabsorption of urea by the kidney of the freshwater rainbow trout. Fish Physiol. Biochem. 18:375–386
McDonald M.D., Wood C.M. 2003. Differential handling of urea and its analogues suggests carrier-mediated urea excretion in the freshwater rainbow trout. Physiol. Biochem. Zool. 76:791–802
McDonald M.D., Wood C.M. 2004. Evidence for facilitated diffusion of urea across the gill basolateral membrane of the rainbow trout (Oncorhynchus mykiss). Biochim. Biophys. Acta. 1663:89–96
McDonald M.D., Wood C.M., Grosell M., Walsh P.J. 2004. Glucocorticoid receptors are involved in the regulation of pulsatile urea excretion in toadfish. J. Comp. Physiol. 174B:649–658
McDonald M.D., Wood C.M., Wang Y., Walsh P.J. 2000. Differential branchial and renal handling of urea, acetamide and thiourea in the gulf toadfish, Opsanus beta: evidence for two transporters. J. Exp. Biol. 203:1027–1037
Minocha R., Studley K., Saier M.H. 2003. The urea transporter (UT) family: bioinformatics analuses leading to structural, functional and evolutionary predictions. Receptor Channels 9:345–352
Mistry A.C., Chen G., Kato A., Nag K., Sands J.M. 2005. A novel type of urea transporter, UT-C, highly expressed in proximal tubule of seawater eel kidney. Am. J. Physiol. 288:F455–F465
Mistry A.C., Honda S., Hirata T., Kato A., Hirose S. 2001. Eel urea transporter is localized to chloride cells and is salinity dependent. Am. J. Physiol. Regul. 281:R1594–R1604
Mommsen T.P., Vijayan M.M., Moon T.W. 1999. Cortisol in teleosts: dynamics, mechanisms of action and metabolic regulation. Rev. Fish Biol. Fisheries 9:211–268
Mommsen T.P., Walsh P.J. 1989. Evolution of urea synthesis in vertebrates: the piscine connection. Science 243:72–75
Morgan R.L., Ballantyne J.S., Wright P.A. 2003a. Regulation of a renal urea transporter with reduces salinity in a mrine elasmobranch, Raja erinacea. J. Exp. Biol. 206:3285–3292
Morgan R.L., Wright P.A., Ballantyne J.S. 2003b. Urea transport in kideny brush-border membrane vesicles from an elasmobranch, Raja erinacea. J. Exp. Biol. 206:3293–3302
Murdaugh H.V., Robin E.D., Hearn C.D. 1964. Urea: apparent carrier-mediated transport by facilitated diffusion in dogfish erythrocytes. Science 144:52–53
Naruse M., Klein J.D., Ashkar Z.M., Jacobs J.D., Sands J.M. 1997. Glucocorticoids downregulate the vasopressin-regulated urea transporter in rat terminal inner medullary collecting ducts. J. Am. Soc. Nephrol. 8:517–523
Øverli O., Harris C.A., Winberg S. 1999. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav. Evol. 54:263–275
Pärt P., Wright P.A., Wood C.M. 1998. Urea and water permeability in dogfish (Squalus acanthias) gills. Comp. Biochem. Physiol. 119A:117–123
Payan P., Goldstein L., Forster R.P. 1973. Gills and kidneys in ureosmotic regulation in euryhaline skates. Am. J. Physiol. 224:367–372
Peng T., Sands J.M., Bagnasco S.M. 2002. Glucocorticoids inhibit transcription and expression of the UT-A urea transporter gene. Am. J. Physiol. 282:F853–F858
Perry S.F., Gilmour K.M., Wood C.M., Part P., Laurent P., Walsh P.J. 1998. The effects of arginine vasotocin and catechlamines on nitrogen excretion and the cardio-respiratory physiology of the gulf toadfish, Opsanus beta. J. Comp. Physiol. 168B:461–472
Piermarini P.M., Evans D.H. 1998. Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater Lake Jesup of the St. Johns River, Florida. Physiol. Zool. 71:553–560
Pilley C.M., Wright P.A. 2000. The mechanisms of urea transport by early life stages of rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 203:3199–3207
Price K.S., Creaser E.P. 1967. Fluctuation in two osmoregulatory componenets, urea and sodium chloride, of the clearnose skate, Raja eglanteria Bosc 1802. I. Upon laboratory modification of external salinities. Comp. Biochem. Physiol. 23:77–82
Rabinowitz L., Gunther R.A. 1973. Urea transport in elasmobranch erythrocytes. Am. J. Physiol. 224:1109–1115
Randall D.J., Wood C.M., Perry S.F., Bergman H., Maloiy G.M., Mommsen T.P., Wright P.A. 1989. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337:165–166
Randall D.J., Wright P.A. 1989. The interaction between carbon dioxide and ammonia excretion and water pH in fish. Can. J. Zool. 67:2936–2942
Saha, N., Ratha, B.K. 1986. Effect of ammonia stress on ureogenesis in a freshwater air-breathing teleost, Heteropneustes fossilis. In: Contemporary Themes in Biochemistry. pp. 342–343. Cambridge University Press, London
Saha N., Ratha B.K. 1987. Active ureogenesis in a freashwater air-breathing teleost, Heteropneustes fossilis. J. Exp. Zool. 52:1–8
Saha N., Ratha B.K. 1998. Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints. Comp. Biochem. Physiol. 120A:195–208
Sands J.M., Gargus J.J., Fröhlich O., Gunn R.B., Kokko J.P. 1992. Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J. Am. Soc. Nephrol. 2:1689–1696
Sands J.M., Martial S., Isozaki T. 1996. Active urea transport in the rat inner medullary collecting duct: functional characterization and initial expression cloning. Kidney Int. 49:1611–1614
Sayer M.D.J., Davenport J. 1987. The relative importance of the gills to ammonia and urea excretion in five seawater and one freshwater teleost species. J. Fish Biol. 31:561–570
Schmidt-Nielsen B., Rabinowitz L. 1964. Methylurea and acetamide:active reabsorption by elasmobranch kidney tubules. Science 146:1587–1588
Schmidt-Nielsen B., Truniger B., Rabinowitz L. 5-1-1972. Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp. Biochem. Physiol. 42A:13–25
Smith C.P., Wright P.A. 1999. Molecular characterization of an elasmobranch urea transporter. Am. J. Physiol. 276:R622–R626
Smith H.W. 1931a. The absorption and excretion of water and salts by elasmobranch fishes. II. Marine elasmobranchs. Am. J. Physiol. 98:296–310
Smith H.W. 1931b. The absorption and excretion of water and salts by the elasmobranch fishes. I. Fresh water elasmobranchs. Am. J. Physiol. 98:279–295
Smith H.W. 1936. The retention and physiological role of urea in the elasmobranch. Biol. Rev. 11: 49–73
Städeler G., Frérichs F.T. 1858. Über das Vorkommen von Harnstoff, Taurin und Scyllit in den Organen der Plagiostomen. J. Prakt. Chem. 73: 48–55
Steele S.L., Yancey P.H., Wright P.A. 2005. The little skate Raja erinacea exhibits an extrahepatic ornithine urea cycle in the muscle and modulates nitrogen metabolism during low-salinity challenge. Physiol. Biochem. Zool. 78:216–226
Sulikowski J.A., Maginniss L.A. 2001. Effects of environmental dilution on body fluid regulation in the yellow stingray, Urolophus jamaicensis. Comp. Biochem. Physiol. 128A:223–232
Terjesen B.F., Chadwick T.D., Verreth J.A., Ronnestad I., Wright P.A. 2001. Pathways for urea production during early life of an air-breathing teleost, the African catfish Clarias gariepinus Burchell. J. Exp. Biol. 204:2155–2165
Terjesen B.F., Ronnestad I., I, Norberg B., Anderson P.M. 2000. Detection and basic properties of carbamoyl phosphate synthetase III during teleost ontogeny: a case study in the Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. 126B:521–535
Terjesen B.F., Verreth J., Fyhn H.J. 1997. Urea and ammonia excretion by embryos and larvae of the African catfish Claria gariepinus (Burchell 1822). Fish. Physiol. Biochem. 16:311–321
Thorson T.B. 1967. Osmoregulatiom in freshwater elasmobranchs. In: P.W. Gilber R.F. Mathewson D.P. Rall, editor. Sharks, skates and rays. Johns Hopkins University Press, Baltimore. pp. 265–270
Tillinghast E.K. 1967. Excretory pathways of ammonia and urea in the earthworm Lumbricus terrestris L. J. Exp. Zool. 166:295–300
Urist M.R. 1962. Calcium and other ions in the blodd and skeleton of the Nicaraguan freshwater shark. Science 137:985–986
Vijayan M.M., Mommsen T.P., Glemet H.C., Moon T.W. 1996. Metabolic effects of cortisol treatment in a marine teleost, the sea raven. J. Exp. Biol. 199: 1509–1514
Walsh P. , Milligan C. 1995. Effects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta. J. Exp. Biol. 198:1559–1566
Walsh P., Tucker B., Hopkins T. 1994a. Effects of confinement/crowding on ureogenesis in the gulf toadfish, Opsanus beta. J. Exp. Biol. 191:195–206
Walsh P., Wood C., Perry S., Thomas S. 1994b. Urea transport by hepatocytes and red blood cells of seleced elasmobranch and teleost fishes. J. Exp. Biol. 193:321–335
Walsh P.J. 1997. Evolution and regulation of urea synthesis and ureotely in (batrachoidid) fishes. Annu. Rev. Physiol. 59:299–323
Walsh P.J., Grosell M., Goss G.G., Bergman H.L., Bergman A.N., Wilson P., Laurent P., Alper S.L., Smith C.P., Kamunde C., Wood C.M. 2001a. Physiological and molecular characterization of urea transport by the gills of the Lake Magadi tilapia (Alcolapia grahami). J. Exp. Biol. 204:509–520
Walsh P.J., Heitz M.J., Campbell C.E., Cooper G.J., Medina M., Wang Y.S., Goss G.G., Vincek V., Wood C.M., Smith C.P. 2000. Molecular characterization of a urea transporter in the gill of the gulf toadfish (Opsanus beta). J. Exp. Biol. 203:2357–2364
Walsh P.J., Smith C.P. 2001. Urea Transport. In: P.A. Wright P.M. Anderson, editors. Nitrogen Excretion. Academic Press, New York pp. 279–307
Walsh P.J., Wang Y., Campbell C.E., De Boeck G., Wood C.M. 2001b. Patterns of nitrogen waste excretion and gill urea transporter mRNA expression in several species of marine fish. Mar. Biol. 139:839–844
Walsh P.J., Wood C.M. 1996. Interactions of urea transport and synthesis in hepatocytes of the gulf toadfish, Opsanus beta. Comp. Biochem. Physiol. 113B:411–416
Wilkie M.P., Wright P.A., Iwama G.K., Wood C.M. 1993. The physiological responses of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi), a resident of highly alkaline pyramid lake (pH 9.4), to challenge at pH 10. J. Exp. Biol. 175: 173–194
Winberg S., Nilsson A., Hylland P., Soderstom V., Nilsson G.E. 1997. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci. Lett. 230:113–116
Wood C., Bergman H., Laurent P., Maina J., Narahara A., Walsh P. 1994. Urea production, acid-base regulation and their interactions in the lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J. Exp. Biol. 189:13–36
Wood C., Hopkins T., Hogstrand C., Walsh P. 1995a. Pulsatile urea excretion in the ureagenic toadfish Opsanus beta: an analysis of rates and routes. J. Exp. Biol. 198:1729–1741
Wood C.M. 1993. Ammonia and urea metabolism and excretion. In: D.H. Evans, editor The Physiology of Fishes. CRC Press Inc., Baton Rouge pp. 379–425
Wood C.M. 2001. Influence of feeding, exercise and temperature on nitrogen metabolism and excretion. In: P.A. Wright P.M. Anderson, editors. Nitrogen Excretion. Academic Press, New York pp. 201–221
Wood C.M., Gilmour K.M., Perry S.F., Part P., Walsh P.J. 1998. Pulsatile urea excretion in gulf toadfish (Opsanus beta): evidence for activation of a specific facilitated diffusion transport system. J. Exp. Biol. 201 (Pt 6): 805–817
Wood C.M., Hopkins T.E., Walsh P.J. 1997. Pulsatile urea excretion in the toadfish (Opsanus beta) is due to a pulsatile excretion mechanism, not a pulsatile production mechanism. J. exp. Biol. 200: 1039–1046
Wood C.M., McDonald M.D., Sundin L., Laurent P., Walsh P.J. 2003. Pulsatile urea excretion in the gulf toadfish: mechanisms and controls. Comp. Biochem. Physiol. 136A:667–684
Wood C.M., Part P., Wright P.A. 1995b. Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). J. Exp. Biol. 198:1545–1558
Wood C.M., Perry S.F., Wright P.A., Bergman H.L., Randall D.J. 1989. Ammonia and urea dynamics in the Lake Magadi tilapia, a ureotelic teleost fish adapted to an extremely alkaline environment. Respir. Physiol. 77:1–20
Wood C.M., Warne J.M., Wang Y., McDonald M.D., Balment R.J., Laurent P., Walsh P.J. 2001. Do circulating plasma AVT and/or cortisol levels control pulsatile urea excretion in the gulf toadfish (Opsanus beta)? Comp. Biochem. Physiol. 129A:859–872
Wright P., Felskie A., Anderson P. 1995a. Induction of ornithine-urea cycle enzymes and nitrogen metabolism and excretion in rainbow trout (Oncorhynchus mykiss) during early life stages. J. Exp. Biol. 198:127–135
Wright P.A., Campbell A., Morgan R.L., Rosenberger A.G., Murray B.W. 2004. Dogmas and controversies in the handling of nitrogenous wastes: expression of arginase Type I and II genes in rainbow trout: influences of fasting on liver enzyme activity and mRNA levels in juveniles. J. Exp. Biol. 207:2033–2042
Wright P.A., Fyhn H.J. 2001. Ontogeny of nitrogen metabolism and excretion. In: Wright P.A., Anderson P., editors. Nitrogen Excretion. Academic Press, San Diego pp. 149–200
Wright P.A., Land M.D. 1998. Urea production and transport in teleost fishes. Comp. Biochem. Physiol. 119A:47–54
Wright P.A., Pärt P., Wood C.M. 1995b. Ammonia and urea excretion in the tidepool sculpin (Oligocottus maculosus): sites of excretion, effects of reduced salinity and mechanisms of urea transport. Fish Physiol. Biochem. 14:111–123
Wright P.A., Perry S.F., Randall D.J., Wood C.M., Bergman H. 1990. The effects of reducing water pH and total CO2 on a teleost fish adapted to an extremely alkaline environment. J. Exp. Biol. 151:361–369
Wright P.A., Randall D.J., Perry S.F. 1989. Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J. Comp. Physiol. 158B:627–635
Acknowledgement
M.D.M. is supported by NSF (#IOB0455904) and P.J.W. by NSERC Discovery Grants and the Canada Research Chair Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McDonald, M., Smith, C. & Walsh, P. The Physiology and Evolution of Urea Transport in Fishes. J Membrane Biol 212, 93–107 (2006). https://doi.org/10.1007/s00232-006-0869-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00232-006-0869-5