Skip to main content
Log in

Properties of Shaker-type Potassium Channels in Higher Plants

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Potassium (K+), the most abundant cation in biological organisms, plays a crucial role in the survival and development of plant cells, modulation of basic mechanisms such as enzyme activity, electrical membrane potentials, plant turgor and cellular homeostasis. Due to the absence of a Na+/K+ exchanger, which widely exists in animal cells, K+ channels and some type of K+ transporters function as K+ uptake systems in plants. Plant voltage-dependent K+ channels, which display striking topological and functional similarities with the voltage-dependent six-transmembrane segment animal Shaker-type K+ channels, have been found to play an important role in the plasma membrane of a variety of tissues and organs in higher plants. Outward-rectifying, inward-rectifying and weakly-rectifying K+ channels have been identified and play a crucial role in K+ homeostasis in plant cells. To adapt to the environmental conditions, plants must take advantage of the large variety of Shaker-type K+ channels naturally present in the plant kingdom. This review summarizes the extensive data on the structure, function, membrane topogenesis, heteromerization, expression, localization, physiological roles and modulation of Shaker-type K+ channels from various plant species. The accumulated results also help in understanding the similarities and differences in the properties of Shaker-type K+ channels in plants in comparison to those of Shaker channels in animals and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

BA:

benzyladenine

CDS:

Coding Sequence

cNBD:

cyclic nucleotide binding domain

2,4-D:

2,4-dichlorophenoxyacetic acid

EAG:

ether a gogo

References

  • Ache P., Becker D., Deeken R., Dreyer I., Weber H., Fromm J., Hedrich R. 2001. VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J. 27:571–580

    PubMed  CAS  Google Scholar 

  • Ache P., Becker D., Ivashikina N., Dietrich P., Roelfsema R.G., Hedrich R. 2000. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett. 486:93–98

    PubMed  CAS  Google Scholar 

  • Anderson J.A., Huprikar S.S., Kochian L.V., Lucas W.J., Gaber R.F. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:3736–3740

    PubMed  CAS  Google Scholar 

  • Baizabal-Aguirre V.M., Clemens S., Uozumi N., Schroeder J.I. 1999. Suppression of inward-rectifying K+ channels KAT1 and AKT2 by dominant negative point mutations in the KAT1 a-subunit. J. Membrane Biol. 167:119–125

    CAS  Google Scholar 

  • Basset M., Conejero G., Lepetit M., Fourcroy P., Sentenac H. 1995. Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Mol. Biol. 29:947–958

    PubMed  CAS  Google Scholar 

  • Becker D., Dreyer I., Hoth S., Reid J.D., Busch H., Lehnen M., Palme K., Hedrich R. 1996. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Proc. Natl. Acad. Sci. USA 93:8123–8128

    PubMed  CAS  Google Scholar 

  • Bentley G.N., Brooks M.A., O’Neill C.A., Findlay J.B. 1999. Determinants of potassium channel assembly localised within the cytoplasmic C-terminal domain of Kv2.1. Biochim. Biophys. Acta 1418:176–184

    PubMed  CAS  Google Scholar 

  • Bertl A., Anderson J.A., Slayman C.L., Gaber R.F. 1995. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane proteins: characterization of Kat1, an inward-rectifying K+ channel from Arabidopsis thaliana, and comparison with endogeneous yeast channels and carriers. Proc. Natl. Acad. Sci. USA 92:2701–2705

    PubMed  CAS  Google Scholar 

  • Blatt M.R. 1991. Ion channel gating in plants: physiological implications and integration for stomatal function. J Membrane Biol. 124:95–112

    CAS  Google Scholar 

  • Blatt M.R. 1992. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. J. Gen. Physiol. 99:615–644

    PubMed  CAS  Google Scholar 

  • Blatt M.R., Gradmann D. 1997. K+-sensitive gating of the K+ outward rectifier in Vicia guard cells. J. Membrane Biol. 158:241–256

    CAS  Google Scholar 

  • Bregante M., Carpaneto A., Pastorino F., Gambale F. 1997. Effects of mono- and multi-valent cations on the inward-rectifying potassium channel in isolated protoplasts from maize roots. Eur. Biophys. J. 26:381–391

    CAS  Google Scholar 

  • Bruggemann L., Dietrich P., Dreyer I., Hedrich R. 1999. Pronounced differences between the native K+ channels and KAT1 and KST1 alpha-subunit homomers of guard cells. Planta 207:370–376

    PubMed  CAS  Google Scholar 

  • Buschmann P.H., Vaidyanathan R., Gassmann W., Schroeder J.I. 2000. Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol. 122:1387–1397

    PubMed  CAS  Google Scholar 

  • Cao Y., Ward J.M., Kelly W.B., Ichida A.M., Gaber R.F., Anderson J.A., Uozumi N., Schroeder J.I., Crawford N.M. 1995. Multiple genes, tissue specificity, and expression dependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiol. 109:1093–1106

    PubMed  CAS  Google Scholar 

  • Cherel I. 2004. Regulation of K+ channel activities in plants: from physiological to molecular aspects. J. Exp. Bot. 55:337–351

    PubMed  CAS  Google Scholar 

  • Cherel I., Michard E., Platet N., Mouline K., Alcon C., Sentenac H., Thibaud J.B. 2002. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    PubMed  CAS  Google Scholar 

  • Costa A., Carpaneto A., Varotto S., Formentin E., Marin O., Barizza E., Terzi M., Gambale F., Lo Schiavo F. 2004. Potassium and carrot embryogenesis: are K+ channels necessary for development? Plant. Mol. Biol. 54:837–852

    PubMed  CAS  Google Scholar 

  • Daram P., Urbach S., Gaymard F., Sentenac H., Cherel I. 1997. Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. Embo J. 16:3455–3463

    PubMed  CAS  Google Scholar 

  • Deeken R., Ivashikina N., Czirjak T., Philippar K., Becker D., Ache P., Hedrich R. 2003. Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3. Plant J. 34:778–787

    PubMed  CAS  Google Scholar 

  • Deeken R., Sanders C., Ache P., Hedrich R. 2000. Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana. Plant J. 23:285–290

    PubMed  CAS  Google Scholar 

  • Dennison K.L., Robertson W.R., Lewis B.D., Hirsch R.E., Sussman M.R., Spalding E.P. 2001. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol. 127:1012–1019

    PubMed  CAS  Google Scholar 

  • Downey P., Szabò I., Ivashikina N., Negro A., Guzzo, Ache P., Hedrich R., Terzi M., Lo Schiavo F. 2000. Kdc1 a novel carrot root hair K+ channel: cloning, characterisation and expression in mammalian cells. J. Biol. Chem. 275:39420–39426

  • Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • Dreyer I., Antunes S., Hoshi T., Müller-Röber B., Palme K., Pongs O., Reintanz B., Hedrich R. 1997. Plant K+ channel a-subunits assemble indiscriminately. Biophys. J. 72:2143–2150

    PubMed  CAS  Google Scholar 

  • Dreyer I., Becker D., Bregante M., Gambale F., Lehnen M., Palme K., Hedrich R. 1998. Single mutations strongly alter the K+-selective pore of the Kin channel KAT1. FEBS Lett. 430:370–376

    PubMed  CAS  Google Scholar 

  • Dreyer I., Michard E., Lacombe B., Thibaud J.B. 2001. A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or “leak” current. FEBS Lett. 505:233–239

    PubMed  CAS  Google Scholar 

  • Dreyer I., Müller-Röber B., Köhler B. 2004a. Voltage-gated ion channels. In: M.R. Blatt, editor. Membrane transport in plants. Blackwell Publishing, Oxford pp. 150–192

    Google Scholar 

  • Dreyer I., Poree F., Schneider A., Mittelstadt J., Bertl A., Sentenac H., Thibaud J.B., Mueller-Roeber B. 2004b. Assembly of plant Shaker-like Kout channels requires two distinct sites of the channel alpha-subunit. Biophys. J. 87:858–872

    CAS  Google Scholar 

  • Durell S.R., Guy H.R. 1999. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys. J. 77:789–807

    PubMed  CAS  Google Scholar 

  • Durell S.R., Hao Y., Nakamura T., Bakker E.P., Guy H.R. 1999. Evolutionary relationship between K+ channels and symporters. Biophys. J. 77:775–788

    PubMed  CAS  Google Scholar 

  • Durell S.R., Shrivastava I.H., Guy H.R. 2004. Models of the structure and voltage-gating mechanism of the shaker K+ channel. Biophys. J. 87:2116–2130

    PubMed  CAS  Google Scholar 

  • Ehrhardt T., Zimmermann S., Muller-Rober B. 1997. Association of plant K+ in channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Lett. 409:166–170

    PubMed  CAS  Google Scholar 

  • Epstein E., Rains D.W., O.E., E. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49:684–692

    PubMed  CAS  Google Scholar 

  • Fan L.M., Zhao Z., Assmann S.M. 2004. Guard cells: a dynamic signaling model. Curr. Opin. Plant. Biol. 7:537–546

    PubMed  CAS  Google Scholar 

  • Findlay G.P., Tyerman S.D., Garrill A., Skerrett M. 1994. Pump and K+ inward rectifiers in the plasmalemma of wheat root protoplasts. J.Membrane Biol. 139:103–116

    CAS  Google Scholar 

  • Formentin E., Varotto S., Costa A., Downey P., Bregante M., Naso A., Picco C., Gambale F., Lo Schiavo F. 2004. DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1. FEBS Lett. 573:61–67

    PubMed  CAS  Google Scholar 

  • Fox T.C., Guerinot M.L. 1998. Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:669–696

    PubMed  CAS  Google Scholar 

  • Fuchs I., Philippar K., Ljung K., Sandberg G., Hedrich R. 2003. Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc. Natl. Acad. Sci. USA 100:11795–11800

    PubMed  CAS  Google Scholar 

  • Fuchs I., Stolzle S., Ivashikina N., Hedrich R. 2005. Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    PubMed  CAS  Google Scholar 

  • Gassmann W., Schroeder I.J. 1994. Inward rectifying K+ channels in root hairs of wheat. A mechanism for aluminum-sensitive low affinity K+ uptake and membrane potential control. Plant Physiol. 105:1399–1408

    PubMed  CAS  Google Scholar 

  • Gaymard F., Cerutti M., Horeau C., Lemaillet G., Urbach S., Ravallec M., Devauchelle G., Sentenac H., Thibaud J.B. 1996. The baculovirus/insect cell system as an alternative to Xenopus oocytes. First characterization of the AKT1 K+ channel from Arabidopsis thaliana. J. Biol. Chem. 271:22863–22870

    PubMed  CAS  Google Scholar 

  • Gaymard F., Pilot G., Lacombe B., Bouchez D., Bruneau D., Boucherez J., Michaux-Ferriere N., Thibaud J.B., Sentenac H. 1998. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    PubMed  CAS  Google Scholar 

  • Geiger D., Becker D., Lacombe B., Hedrich R. 2002. Outer pore residues control the H+ and K+ sensitivity of the Arabidopsis potassium channel AKT3. Plant Cell 14:1859–1868

    PubMed  CAS  Google Scholar 

  • Gierth M., Maser P., Schroeder J.I. 2005. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol. 137:1105–1114

    PubMed  CAS  Google Scholar 

  • Golldack D., Quigley F., Michalowski C.B., Kamasani U.R., Bohnert H.J. 2003. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant. Mol. Biol. 51:71–81

    PubMed  CAS  Google Scholar 

  • Gomez-Lagunas F. 1997. Shaker B K+ conductance in Na+ solutions lacking K+ ions: a remarkably stable non-conducting state produced by membrane depolarizations. J. Physiol. 499:3–15

    PubMed  CAS  Google Scholar 

  • Hartje S., Zimmermann S., Klonus D., Müller-Röber B. 2000. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210:723–731

    PubMed  CAS  Google Scholar 

  • Hedrich R., Moran O., Conti F., Bush H., Becker D., Gambale F., Dreyer I., Kuch A., Neuwinger K., Palme K. 1995. Inward rectifier potassium channels in plants differ from their animal counterparts in response to voltage and channel modulators. Eur. Biophys. J. 24:107–115

    PubMed  CAS  Google Scholar 

  • Heginbotham L., Abramson T., MacKinnon 1992. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258:1152–1155

  • Hille B. 2001. Ionic channels of excitable membrane. Sinauer Ass. Inc, Sunderland, MA

    Google Scholar 

  • Hirsch R.E., Lewis B.D., Spalding E.P., Sussman M.R. 1998. A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    PubMed  CAS  Google Scholar 

  • Hoshi T. 1995. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J. Gen. Physiol. 105:309–328

    PubMed  CAS  Google Scholar 

  • Hosy E., Vavasseur A., Mouline K., Dreyer I., Gaymard F., Poree F., Boucherez J., Lebaudy A., Bouchez D., Very A.A., Simonneau T., Thibaud J.B., Sentenac H. 2003. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. USA 100:5549–5554

    PubMed  CAS  Google Scholar 

  • Hoth S., Dreyer I., Dietrich P., Becker D., Müller-Röber B., Hedrich R. 1997. Molecular basis of plant-specific acid activation of K+ uptake channels. Proc. Natl. Acad. Sci. USA 94:4806–4810

    PubMed  CAS  Google Scholar 

  • Hoth S., Geiger D., Becker D., Hedrich R. 2001. The pore of plant K+ channel is involved in voltage and pH sensing: domain-swapping betweenn different K+ channel α-subunits. Plant Cell 13:943–952

    PubMed  CAS  Google Scholar 

  • Hoth S., Hedrich R. 1999. Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J. Biol. Chem. 274:11599–11603

    PubMed  CAS  Google Scholar 

  • Ichida A.M., Pei Z.M., Baizabal-Aguirre V.M., Turner K.J., Schroeder J.I. 1997. Expression of a Cs+-resistant guard cell K+ channel confers Cs+-resistant, light-induced stomatal opening in transgenic arabidopsis. Plant Cell 9:1843–1857

    PubMed  CAS  Google Scholar 

  • Ichida A.M., Schroeder J.I. 1996. Increased resistance to extracellular cation block by mutation of the pore domain of the Arabidopsis inward-rectifying K+ channel KAT1. J. Membrane Biol. 151:53–62

    CAS  Google Scholar 

  • Isacoff E.Y., Jan Y.N., Jan L.Y. 1990. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature 345:530–534

    PubMed  CAS  Google Scholar 

  • Ivashikina N., Becker D., Ache P., Meyerhoff O., Felle H.H., Hedrich R. 2001. K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett. 508:463–469

    PubMed  CAS  Google Scholar 

  • Ivashikina N., Deeken R., Fischer S., Ache P., Hedrich R. 2005. AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. J. Gen. Physiol. 125:483–492

    PubMed  CAS  Google Scholar 

  • Kato Y., Sakaguchi M., Mori Y., Saito K., Nakamura T., Bakker E.P., Sato Y., Goshima S., Uozumi N. 2001. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc. Natl. Acad. Sci. USA 98:6488–6493

    PubMed  CAS  Google Scholar 

  • Ketchum K.A., Slayman C.W. 1996. Isolation of an ion channel gene from Arabidopsis thaliana using the H5 signature sequence from voltage-dependent K+ channels. FEBS Lett. 378:19–26

    PubMed  CAS  Google Scholar 

  • Kopka J., Provart N.J., Muller-Rober B. 1997. Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant J. 11:871–882

    PubMed  CAS  Google Scholar 

  • Kwak J.M., Murata Y., Baizabal-Aguirre V.M., Merrill J., Wang M., Kemper A., Hawke S.D., Tallman G., Schroeder J.I. 2001. Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in arabidopsis. Plant Physiol. 127:473–485

    PubMed  CAS  Google Scholar 

  • Lacombe B., Pilot G., Gaymard F., Sentenac H., Thibaud J.B. 2000a. pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Lett. 466:351–354

    CAS  Google Scholar 

  • Lacombe B., Pilot G., Michard E., Gaymard F., Sentenac H., Thibaud J.B. 2000b. A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    CAS  Google Scholar 

  • Lacombe B., Thibaud J.B. 1998. Evidence for a multi-ion pore behavior in the plant potassium channel KAT1. J. Membrane Biol. 166:91-100

    CAS  Google Scholar 

  • Lagarde D., Basset M., Lepetit M., Conejero G., Gaymard F., Astruc S., Grignon C. 1996. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 9:195–203

    PubMed  CAS  Google Scholar 

  • Lai H.C., Grabe M., Jan Y.N., Jan L.Y. 2005. The S4 voltage sensor packs against the pore domain in the KAT1 voltage-gated potassium channel. Neuron 47:395–406

    PubMed  CAS  Google Scholar 

  • Lainè M., Papazian D.M., Roux B. 2004. Critical assessment of a proposed model of Shaker. FEBS Lett. 564:257–263

    PubMed  Google Scholar 

  • Langer K., Ache P., Geiger D., Stinzing A., Arend M., Wind C., Regan S., Fromm J., Hedrich R. 2002. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J. 32:997–1009

    PubMed  CAS  Google Scholar 

  • Langer K., Levchenko V., Fromm J., Geiger D., Steinmeyer R., Lautner S., Ache P., Hedrich R. 2004. The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. Plant J. 37:828–838

    PubMed  CAS  Google Scholar 

  • Larsson H.P., Baker O.S., Dhillon D.S., Isacoff E.Y. 1996. Transmembrane movement of the shaker K+ channel S4. Neuron 16:387–397

    PubMed  CAS  Google Scholar 

  • Latorre R., Munoz F., Gonzalez C., Cosmelli D. 2003. Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels (Review). Mol. Membr. Biol. 20:19–25

    PubMed  CAS  Google Scholar 

  • Lew R.R. 1991. Substrate regulation of single potassium and chloride ion channels in Arabidopsis plasma membrane. Plant Physiol. 95:642–647

    PubMed  CAS  Google Scholar 

  • Li J., Assmann S.M. 1996. An Abscisic Acid-Activated and Calcium-Independent Protein Kinase from Guard Cells of Fava Bean. Plant Cell 8:2359–2368

    PubMed  CAS  Google Scholar 

  • Li J., Lee Y.R., Assmann S.M. 1998. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785–795

    PubMed  CAS  Google Scholar 

  • Li, J., Wang, X.-Q., Watson, M.B., Assmann, S. 2000. Regulation of Abscisic acid-induced stomatal closure and anion channels by guard all AAPK kinase. Science 287:300–303

    PubMed  CAS  Google Scholar 

  • Long S.B., Campbell E.B., Mackinnon R. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    CAS  Google Scholar 

  • Long S.B., Campbell E.B., Mackinnon R. 2005b. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908

    CAS  Google Scholar 

  • Ludwig J., Owen D., Pongs O. 1997. Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-a-go-go potassium channel. Embo J. 16:6337–6345

    PubMed  CAS  Google Scholar 

  • Ma D., Zerangue N., Raab-Graham K., Fried S.R., Jan Y.N., Jan L.Y. 2002. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron 33:715–729

    PubMed  CAS  Google Scholar 

  • Marten I., Gaymard F., Lemaillet G., Thibaud J.B., Sentenac H., Hedrich R. 1996. Functional expression of the plant K+ channel KAT1 in insect cells. FEBS Lett. 380:229–232

    PubMed  CAS  Google Scholar 

  • Marten I., Hoshi T. 1997. Voltage-dependent gating characteristics of the K+ channel KAT1 depend on the N and C termini. Proc. Natl. Acad. Sci. USA 94:3448–3453

    PubMed  CAS  Google Scholar 

  • Marten I., Hoth S., Deeken R., Ache P., Ketchum K.A., Hoshi T., Hedrich R. 1999. AKT3, a phloem-localized K+ channel, is blocked by protons. Proc. Natl. Acad. Sci. USA 96:7581–7586

    PubMed  CAS  Google Scholar 

  • Maser P., Thomine S., Schroeder J.I., Ward J.M., Hirschi K., Sze H., Talke I.N., Amtmann A., Maathuis F.J., Sanders D., Harper J.F., Tchieu J., Gribskov M., Persans M.W., Salt D.E., Kim S.A., Guerinot M.L. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126:1646–1667

    PubMed  CAS  Google Scholar 

  • Michard E., Dreyer I., Lacombe B., Sentenac H., J.B., T. 2005a. Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant J. 44:783–797

  • Michard E., Lacombe B., Porée F., Mueller-Roeber B., Sentenac H., Thibaud J.B., Dreyer I. 2005b. A unique voltage-sensor sensitizes the potassium channel AKT2 to phosphoregulation. J. Gen. Physiol. 126:605–617

    CAS  Google Scholar 

  • Miedema H., Assmann S.M. 1996. A membrane-delimited effect of internal pH on the K+ outward rectifier of Vicia faba guard cells. J. Membrane Biol. 154:227–237

    CAS  Google Scholar 

  • Mori I.C., Uozumi N., Muto S. 2000. Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cells. Plant Cell Physiol. 41:850–856

    PubMed  CAS  Google Scholar 

  • Moroni A., Gazzarrini S., Cerana R., Colombo R., Sutter J.U., DiFrancesco D., Gradmann D., Thiel G. 2000. Mutation in pore domain uncovers cation- and voltage-sensitive recovery from inactivation in KAT1 channel. Biophys J. 78:1862–1871

    PubMed  CAS  Google Scholar 

  • Moshelion M., Becker D., Czempinski K., Mueller-Rober B., Attali B., Hedrich R., Moran N. 2002. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol. 128:634–642

    PubMed  CAS  Google Scholar 

  • Mouline K., Very A.A., Gaymard F., Boucherez J., Pilot G., Devic M., Bouchez D., Thibaud J.B., Sentenac H. 2002. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev. 16:339–350

    PubMed  CAS  Google Scholar 

  • Müller-Röber B., Ellenberg J., Provart N., Willmitzer L., Busch H., Becker D., Dietrich P., Hoth S., Hedrich R. 1995. Cloning and electrophysiological analysis of KST1,an inward rectifying K+ channel expressed in potato guard cells. EMBO J. 14:2409–2416

    PubMed  Google Scholar 

  • Nakamura R.L., Anderson J.A., Gaber R.F. 1997. Determination of key structural requirements of a K+ channel pore. J. Biol. Chem. 272:1011–1018

    PubMed  CAS  Google Scholar 

  • Nakamura R.L., McKendree W.L., Jr., Hirsch R.E., Sedbrook J.C., Gaber R.F., Sussman M.R. 1995. Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol. 109:371–374

    PubMed  CAS  Google Scholar 

  • Obrdlik P., El-Bakkoury M., Hamacher T., Cappellaro C., Vilarino C., Fleischer C., Ellerbrok H., Kamuzinzi R., Ledent V., Blaudez D., Sanders D., Revuelta J.L., Boles E., Andre B., Frommer W.B.. 2004. K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc. Natl. Acad. Sci. USA 101:12242–12247

    PubMed  CAS  Google Scholar 

  • Ottschytsch N., Raes A., Van Hoorick D., Snyders D.J.. 2002. Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99:7986–7991

    PubMed  CAS  Google Scholar 

  • Paganetto A., Bregante M., Downey P., Lo Schiavo F., Hoth S., Hedrich R., Gambale F. 2001. A novel K+ channel expressed in carrot roots with a low susceptibility toward metal ions. J. Bioen. Biomemb. 33:63–71

    CAS  Google Scholar 

  • Papazian D.M., Shao X.M., Seoh S.A., Mock A.F., Huang Y., Wainstock D.H. 1995. Electrostatic interaction of S4 voltage sensor in Shaker K+ channel. Neuron 14:1293–1301

    PubMed  CAS  Google Scholar 

  • Pardo L.A., Heinemann S.H., Terlau H., Ludewig U., Lorra C., Pongs O., Stuhmer W.. 1992. Extracellular K+ specifically modulates a rat brain K+ channel. Proc. Natl. Acad. Sci. USA 89:2466–2470

    PubMed  CAS  Google Scholar 

  • Philippar K., Buchsenschutz K., Abshagen M., Fuchs I., Geiger D., Lacombe B., Hedrich R. 2003. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J. Biol. Chem. 278:16973–16981

    PubMed  CAS  Google Scholar 

  • Philippar K., Fuchs I., Lüthen H., Hoth S., Bauer C., Haga K., Thiel G., Ljung K., Sandberg G., Böttger M., Becker D., Hedrich R. 1999. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. USA 96:12186–12191

    PubMed  CAS  Google Scholar 

  • Philippar K., Ivashikina N., Ache P., Christian M., Luthen H., Palme K., Hedrich R. 2004. Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J. 37:815–827

    PubMed  CAS  Google Scholar 

  • Picco C., Bregante M., Naso A., Gavazzo P., Costa A., Formentin E., Downey P., F., L.S., Gambale F. 2004. Histidines are responsible for zinc potentiation of the current in KDC1 carrot channels. Biophys. J. 86:224–234

  • Pilot G., Gaymard F., Mouline K., Cherèl I., Sentenac H. 2003a. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol. 51:773–787

    CAS  Google Scholar 

  • Pilot G., Lacombe B., Gaymard F., Cherel I., Boucherez J., Thibaud J.B., Sentenac H. 2001. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 276:3215–3221

    PubMed  CAS  Google Scholar 

  • Pilot G., Pratelli R., Gaymard F., Meyer Y., Sentenac H. 2003b. Five-group distribution of the Shaker-like K+ channel family in higher plants. J. Mol. Evol. 56:418–434

    CAS  Google Scholar 

  • Post M.A., Kirsch G.E., Brown A.M. 1996. Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett. 399:177–182

    PubMed  CAS  Google Scholar 

  • Pratelli R., Lacombe B., Torregrosa L., Gaymard F., Romieu C., Thibaud J.B., Sentenac H. 2002. A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry. Plant Physiol. 128:564–577

    PubMed  CAS  Google Scholar 

  • Reintanz B., Szyroki A., Ivashikina N., Ache P., Godde M., Becker D., Palme K., Hedrich R. 2002. AtKC1, a silent Arabidopsis potassium channel a-subunit modulates root hbair K+ influx. Proc. Natl. Acad. Sci. USA 99:4079–4084

    PubMed  CAS  Google Scholar 

  • Roberts S.K. 1998. Regulation of K+ Channels in Maize Roots by Water Stress and Abscisic Acid. Plant Physiol. 116:145–153

    CAS  Google Scholar 

  • Roberts S.K., Tester M. 1995. Inward and outward K+-selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant J. 8:811–825

    CAS  Google Scholar 

  • Salinas M., Duprat F., Heurteaux C., Hugnot J.P., Lazdunski M. 1997. New modulatory alpha subunits for mammalian Shab K + channels. J. Biol. Chem. 272:24371–24379

    PubMed  CAS  Google Scholar 

  • Sato Y., Sakaguchi M., Goshima S., Nakamura T., Uozumi N. 2002. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6. Proc. Natl. Acad. Sci. USA 99:60–65

    PubMed  CAS  Google Scholar 

  • Sato Y., Sakaguchi M., Goshima S., Nakamura T., Uozumi N. 2003. Molecular dissection of the contribution of negatively and positively charged residues in S2, S3, and S4 to the final membrane topology of the voltage sensor in the K+ channel, KAT1. J. Biol. Chem. 278:13227–13234

    PubMed  CAS  Google Scholar 

  • Schachtman D.P. 2000. Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim. Biophys. Acta 1465:127–139

    PubMed  CAS  Google Scholar 

  • Schachtman D.P., Schroeder J.I., Lucas W.J., Anderson J.A., Gaber R.F. 1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    PubMed  CAS  Google Scholar 

  • Schachtman D.P., Tyerman S.D., Terry B.R. 1991. The K+/Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat-species. Plant Physiol. 97:598–605

    PubMed  CAS  Google Scholar 

  • Schroeder J., Raschke K., Neher E. 1987. Voltage dependence of K+ channels in guard-cell protoplasts. Proc. Natl. Acad. Sci. 84:4108–4112

    PubMed  CAS  Google Scholar 

  • Schroeder I.J., Ward J.M., Gassmann W. 1994. Perspective on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu. Rev. Biophys. Biomol. Struct. 23:441–471

    PubMed  CAS  Google Scholar 

  • Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J.M., Gaymard F., Grignon C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    PubMed  CAS  Google Scholar 

  • Seoh S.A., Sigg D., Papazian D.M., Bezanilla F. 1996. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16:1159–1167

    PubMed  CAS  Google Scholar 

  • Sheahan J.J., Ribeiro-Neto L., Sussman M.R. 1993. Cesium-insensitive mutants of Arabidopsis thaliana. Plant J. 35:647–656

    Google Scholar 

  • Shrivastava I.H., Durell S.R., Guy H.R. 2004. A model of voltage gating developed using the KvAP channel crystal structure. Biophys J 87:2255–2270

    PubMed  CAS  Google Scholar 

  • Stocker M., Hellwig M., Kerschensteiner D. 1999. Subunit assembly and domain analysis of electrically silent K+ channel alpha-subunits of the rat Kv9 subfamily. J. Neurochem. 72:1725–1734

    PubMed  CAS  Google Scholar 

  • Su H., Golldack D., Katsuhara M., Zhao C., Bohnert H.J. 2001. Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol. 125:604–614

    PubMed  CAS  Google Scholar 

  • Su Y.H., North H., Grignon C., Thibaud J.B., Sentenac H., Very A.A. 2005. Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range. Plant Cell 17:1532–1548

    PubMed  CAS  Google Scholar 

  • Szabo I., Negro A., Downey P.M., Zoratti M., Lo Schiavo F., Giacometti G.M. 2000. Temperature-dependent functional expression of a plant K+ channel in mammalian cells. Biochem. Biophys. Res. Commun. 274:130–135

    PubMed  CAS  Google Scholar 

  • Szyroki A., Ivashikina N., Dietrich P., Roelfsema M.R., Ache P., Reintanz B., Deeken R., Godde M., Felle H., Steinmeyer R., Palme K., Hedrich R. 2001. KAT1 is not essential for stomatal opening. Proc. Natl. Acad. Sci. USA 98:2917–2921

    PubMed  CAS  Google Scholar 

  • Tang X.D., Marten I., Dietrich P., Ivashikina N., Hedrich R., Hoshi T. 2000. Histidine118 in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys. J. 78:1255–1269

    Article  PubMed  CAS  Google Scholar 

  • Tempel B.L., Papazian D.M., Schwarz T.L., Jan Y.N., Jan L.Y. 1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–775

    PubMed  CAS  Google Scholar 

  • Thomine S., Zimmermann S., Van Duijin B., Barbier H., Guern J. 1994. Calcium channel antagonists induce direct inhibition of the outward rectifying potassium channel in tobacco protoplasts. FEBS Lett. 340:45–50

    PubMed  CAS  Google Scholar 

  • Thiel G., Macrobbie E.A.C., Blatt M.R. 1992. Membrane-transport in stomatal guard-cells - The importance of voltage control. J. Membrane Biol. 126: 1–18

    CAS  Google Scholar 

  • Umigai N., Sato Y., Mizutani A., Utsumi T., Sakaguchi M., Uozumi N. 2003. Topogenesis of two transmembrane type K+ channels, Kir 2.1 and KcsA. J. Biol. Chem. 278:40373–40384

    PubMed  CAS  Google Scholar 

  • Uozumi N. 2001. E. coli as an expression system for K+ transport systems from plants. Am. J. Physiol. 281:C733–C739

    CAS  Google Scholar 

  • Uozumi N., Gassmann W., Cao Y., Schroeder J.I. 1995. Identification of strong modification in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J. Biol. Chem. 270:24276–24281

    PubMed  CAS  Google Scholar 

  • Uozumi N., Nakamura T., Schroeder J.I., Muto S. 1998. Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 95:9773–9778

    PubMed  CAS  Google Scholar 

  • Uozumi N., Yamada K., Goshima S., Ona T., Oiki S. 2001. Sodium blocking induced by a point mutation at the C-terminal end of the pore helix of the KAT1 channel. J. Membrane Biol. 181:163–170

    CAS  Google Scholar 

  • Urbach S., Cherel I., Sentenac H., Gaymard F. 2000. Biochemical characterization of the Arabidopsis K+ channels KAT1 and AKT1 expressed or co-expressed in insect cells. Plant J. 23:527–538

    PubMed  CAS  Google Scholar 

  • Véry A.A., Bosseux C., Gaymard F., Sentenac H., Thibaud J.B. 1994. Level of expression in Xenopus oocytes affects some characteristics of a plant inward-rectifying voltage-gated K+ channel. Pfluegers Arch. 428:422–424

    Google Scholar 

  • Véry A.A., Gaymard F., Bosseux C., Sentenac H., Thibaud J.B. 1995. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant J. 7:321–332

    PubMed  Google Scholar 

  • Very A.A., Sentenac H. 2002. Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci. 7:168–175

    PubMed  Google Scholar 

  • Véry A.A., Sentenac H. 2003. Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol. 54:575–603

    PubMed  Google Scholar 

  • Wegner L.H., De Boer A.H. 1997. Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling. Plant Physiol 115:1707–1719

    PubMed  CAS  Google Scholar 

  • Wegner L.H., Raschke K. 1994. Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Pla nt Physiol. 105:799–813

    CAS  Google Scholar 

  • Zagotta W.N., Olivier N.B., Black K.D., Young E.C., Olson R., Gouaux E. 2003. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205

    PubMed  CAS  Google Scholar 

  • Zhong H., Molday L.L., Molday R.S., Yau K.W. 2002. The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420:193–198

    PubMed  CAS  Google Scholar 

  • Zimmermann S., Hartje S., Ehrhardt T., Plesch G., Müller-Röber B. 2001. The K+ channel SKT1 is co-expressed with KST1 in potato guard cells—both channels can co-assemble via their conserved KT domains. Plant J. 28:517–527

    PubMed  CAS  Google Scholar 

  • Zimmermann S., Talke I., Ehrhardt T., Nast G., Müller-Röber B. 1998. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiol. 116:879–890

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant fellowship of Nagoya University to FG and by the Ministero dell’Istruzione e della Ricerca of Italy, Fondi per gli Investimenti della Ricerca di Base, Project N-RBAUO183A9, by a grants-in-aid for scientific research (17078005 and 17380064) and the 21st Century COE Program from MEXT and JSPS and Institute for Advanced Research Project Funds from Nagoya University. We thank Alessia Naso for helpful discussion and the construction of the phylogenetic tree, and Ingo Dreyer, Armando Carpaneto and Joachim Scholz-Starke for critical reading of the manuscript. F.G. dedicates this paper to the memory of G. Menestrina (1954–2004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Gambale or N. Uozumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambale, F., Uozumi, N. Properties of Shaker-type Potassium Channels in Higher Plants. J Membrane Biol 210, 1–19 (2006). https://doi.org/10.1007/s00232-006-0856-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0856-x

Keywords