Skip to main content
Log in

The Role of TRP Channels in Oxidative Stress-induced Cell Death

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na+ and Ca2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNFα, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H2O2 resulted in Ca2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H2O2-induced Ca2+ influx, the increase in [Ca2+]i, and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca2+]i and increased apoptosis after treatment with H2O2 or TNFα. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca2+]i through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H2O2 and amyloid β-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aarts M., Iihara K., Wei W.L., Xiong Z.G., Arundine M., Cerwinski W., MacDonald J.F., Tymianski M. 2003. A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  • Agam K., von Campenhausen M., Levy S., Ben-Ami H.C., Cook B., Kirschfeld K., Minke B. 2000. Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. J. Neurosci. 20:5748–5755

    CAS  PubMed  Google Scholar 

  • Balzer M., Lintschinger B., Groschner K. 1999. Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc. Res. 42:543–549

    Article  CAS  PubMed  Google Scholar 

  • Bauer M.K., Vogt M., Los M., Siegel J., Wesselborg S., Schulze-Osthoff K. 1998. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J. Biol. Chem. 273:8048–8055

    Article  CAS  PubMed  Google Scholar 

  • Bezzerides V.J., Ramsey I.S., Kotecha S., Greka A., Clapham D.E. 2004. Rapid vesicular translocation and insertion of TRP channels. Nat. Cell. Biol. 6:709–720

    Article  CAS  PubMed  Google Scholar 

  • Boulay G., Brown D.M., Qin N., Jiang M., Dietrich A., Zhu M.X., Chen Z., Birnbaumer M., Mikoshiba K., Birnbaumer L. 1999. Modulation of Ca2+ entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc. Natl. Acad. Sci. USA 96:14955–14960

    Article  CAS  PubMed  Google Scholar 

  • Buniel M.C., Schilling W.P., Kunze D.L. 2003. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway. J. Comp. Neurol. 464:404–413

    Article  CAS  PubMed  Google Scholar 

  • Butterfield D.A. 2003. Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer’s disease brain: mechanisms and consequences. Curr Med Chem 10:2651–2659

    Article  CAS  PubMed  Google Scholar 

  • Cabaner C., Gajate C., Macho A., Munoz E., Modolell M., Mollinedo F. 1999. Induction of apoptosis in human mitogen-activated peripheral blood T-lymphocytes by the ether phospholipid ET-18-OCH3: involvement of the Fas receptor/ligand system. Br. J. Pharmacol. 127:813–825

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti T., Das S., Mondal M., Roychoudhury S., Chakraborti S. 1999. Oxidant, mitochondria and calcium: an overview. Cell Signal 11:77–85

    Article  CAS  PubMed  Google Scholar 

  • Chandra J., Samali A., Orrenius S. 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29:323–333

    Article  CAS  PubMed  Google Scholar 

  • Clapham D.E. 2003. TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  • Crompton M. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341:233–249

    Article  CAS  PubMed  Google Scholar 

  • Davidovic L., Vodenicharov M., Affar E.B., Poirier G.G. 2001. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 268:7–13

    Article  CAS  PubMed  Google Scholar 

  • Denning T.L., Takaishi H., Crowe S.E., Boldogh I., Jevnikar A., Ernst P.B. 2002. Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic. Biol. Med. 33:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Duncan L.M., Deeds J., Hunter J., Shao J., Holmgren L.M., Woolf E.A., Tepper R.I., Shyjan A.W. 1998. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer. Res. 58:1515–1520

    CAS  PubMed  Google Scholar 

  • Ermak G., Davies K.J. 2002. Calcium and oxidative stress: from cell signaling to cell death. Mol. Immunol. 38:713–721

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E., Marshall I.C., Boyfield I., Skaper S.D., Hughes J.P., Owen D.E., Zhang W., Miller B.A., Benham C.D., McNulty S. 2005. Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J. Neurochem. 95: 715–722.

    Article  CAS  PubMed  Google Scholar 

  • Fonfria E., Marshall I.C.B., Benham C.D., Boyfield I., Brown J.D., Hill K., Hughes J.P., Skaper S.D., Scharenberg A.M., McNulty S. 2004. TRPM2 Channel Opening in Response to Oxidative Stress is Dependent on Activation of Poly (ADP-Ribose) Polymerase. Br.J. Pharmacol. 143:186–192

    Article  CAS  PubMed  Google Scholar 

  • Goel M., Sinkins W.G., Schilling W.P. 2002. Selective association of TRPC channel subunits in rat brain synaptosomes. J. Biol. Chem. 277:48303–48310

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishna R., Jaken S. 2000. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 28:1349–1361

    Article  CAS  PubMed  Google Scholar 

  • Green D.R., Kroemer G. 2004. The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  • Groschner K., Rosker C., Lukas M. 2004. Role of TRP channels in oxidative stress. Novartis Found. Symp. 258:222–230; discussion 231–235, 263–266

    Article  CAS  PubMed  Google Scholar 

  • Halestrap A.P., McStay G.P., Clarke S.J. 2002. The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  CAS  PubMed  Google Scholar 

  • Han W.K., Sapirstein A., Hung C.C., Alessandrini A., Bonventre J.V. 2003. Cross-talk between cytosolic phospholipase A2 alpha (cPLA2 alpha) and secretory phospholipase A2 (sPLA2) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells: sPLA2 regulates cPLA2 alpha activity that is responsible for arachidonic acid release. J. Biol. Chem. 278:24153–24163

    Article  CAS  PubMed  Google Scholar 

  • Hanano T., Hara Y., Shi J., Morita H., Umebayashi C., Mori E., Sumimoto H., Ito Y., Mori Y., Inoue R. 2004. Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J. Pharmacol. Sci. 95:403–419

    Article  CAS  PubMed  Google Scholar 

  • Hara Y., Wakamori M., Ishii M., Maeno E., Nishida M., Yoshida T., Yamada H., Shimizu S., Mori E., Kudoh J., Shimizu N., Kurose H., Okada Y., Imoto K., Mori Y. 2002. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell. 9:163–173

    Article  CAS  PubMed  Google Scholar 

  • Hardie R.C., Minke B. 1992. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    Article  CAS  PubMed  Google Scholar 

  • Harteneck C., Plant T.D., Schultz G. 2000. From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166

    Article  CAS  PubMed  Google Scholar 

  • He Y., Yao G., Savoia C., Touyz R.M. 2005. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ. Res. 96:207–215

    Article  CAS  PubMed  Google Scholar 

  • Heiner I., Eisfeld J., Halaszovich C.R., Wehage E., Jungling E., Zitt C., Luckhoff A. 2003a. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem. J. 371:1045–1053

    Article  CAS  Google Scholar 

  • Heiner I., Eisfeld J., Luckhoff A. 2003b. Role and regulation of TRP channels in neutrophil granulocytes. Cell. Calcium. 33:533–540

    Article  CAS  Google Scholar 

  • Herson P.S., Lee K., Pinnock R.D., Hughes J., Ashford M.L. 1999. Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J. Biol. Chem. 274:833–841

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T., Obukhov A.G., Schaefer M., Harteneck C., Gudermann T., Schultz G. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T., Schaefer M., Schultz G., Gudermann T. 2002. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA 99:7461–7467

    Article  CAS  PubMed  Google Scholar 

  • Jo D.G., Jun J.I., Chang J.W., Hong Y.M., Song S., Cho D.H., Shim S.M., Lee H.J., Cho C., Kim do H., Jung Y.K. 2004. Calcium binding of ARC mediates regulation of caspase 8 and cell death. Mol. Cell. Biol. 24:9763–9770

    Article  CAS  PubMed  Google Scholar 

  • Jones B.E., Lo C.R., Liu H., Pradhan Z., Garcia L., Srinivasan A., Valentino K.L., Czaja M.J. 2000. Role of caspases and NF-kappaB signaling in hydrogen peroxide- and superoxide-induced hepatocyte apoptosis. Am. J. Physiol. 278:G693–G699

    CAS  Google Scholar 

  • Klohn P.C., Soriano M.E., Irwin W., Penzo D., Scorrano L., Bitsch A., Neumann H.G., Bernardi P. 2003. Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc. Natl. Acad. Sci. USA 100:10014–10019

    Article  PubMed  CAS  Google Scholar 

  • Kolisek M., Beck A., Fleig A., Penner R. 2005. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell. 18:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kozak J.A., Cahalan M.D. 2003. MIC channels are inhibited by internal divalent cations but not ATP. Biophys. J. 84:922–927

    Article  CAS  PubMed  Google Scholar 

  • Kraft R., Grimm C., Grosse K., Hoffmann A., Sauerbruch S., Kettenmann H., Schultz G., Harteneck C. 2004. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am. J. Physiol. 286:C129–137

    Article  CAS  Google Scholar 

  • Kuhn F.J., Luckhoff A. 2004. Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J. Biol. Chem. 279:46431–4647

    Article  PubMed  CAS  Google Scholar 

  • Langley B., Ratan R.R. 2004. Oxidative stress-induced death in the nervous system: cell cycle dependent or independent? J. Neurosci. Res 77:621–9

    Article  CAS  Google Scholar 

  • Leslie C.C. 1997. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272:16709–16712

    Article  CAS  PubMed  Google Scholar 

  • Li H.S., Montell C. 2000. TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 150:1411–1422

    Article  CAS  PubMed  Google Scholar 

  • Lintschinger B., Balzer-Geldsetzer M., Baskaran T., Graier W.F., Romanin C., Zhu M.X., Groschner K. 2000. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem. 275:27799–27805

    CAS  PubMed  Google Scholar 

  • Lipton P. 1999. Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Lockwich T.P., Liu X., Singh B.B., Jadlowiec J., Weiland S., Ambudkar I.S. 2000. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J. Biol. Chem. 275:11934–42

    Article  CAS  PubMed  Google Scholar 

  • Ma S., Ochi H., Cui L., Zhang J., He W. 2003. Hydrogen peroxide induced down-regulation of CD28 expression of Jurkat cells is associated with a change of site alpha-specific nuclear factor binding activity and the activation of caspase-3. Exp Gerontol. 38:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Matsura T., Kai M., Fujii Y., Ito H., Yamada K. 1999. Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation. Free Radic Res 30:73–83

    CAS  PubMed  Google Scholar 

  • Matsushita M., Kozak J.A., Shimizu Y., McLachlin D.T., Yamaguchi H., Wei F.Y., Tomizawa K., Matsui H., Chait B.T., Cahalan M.D., Nairn A.C. 2005. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J. Biol. Chem. 280:20793–20803

    Article  CAS  PubMed  Google Scholar 

  • McHugh D., Flemming R., Xu S.Z., Perraud A.L., Beech D.J. 2003. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J. Biol. Chem. 278:11002–11006

    Article  CAS  PubMed  Google Scholar 

  • McNulty S., Fonfria E. 2005. The role of TRPM channels in cell death. Pfluegers. Arch. 451:235–242

    Article  CAS  Google Scholar 

  • Minke B., Cook B. 2002. TRP channel proteins and signal transduction. Physiol. Rev. 82:429–472

    CAS  PubMed  Google Scholar 

  • Montell C., 2001. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001:RE1

  • Montell C. 2003. Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr. Biol. 13:R799–R801

    Article  CAS  PubMed  Google Scholar 

  • Montell, C. 2005. The TRP superfamily of cation channels. Sci STKE 2005:re3

  • Montell C., Rubin G.M. 1989. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Nadler M.J., Hermosura M.C., Inabe K., Perraud A.L., Zhu Q., Stokes A.J., Kurosaki T., Kinet J.P., Penner R., Scharenberg A.M., Fleig A. 2001. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  CAS  PubMed  Google Scholar 

  • Nagamine K., Kudoh J., Minoshima S., Kawasaki K., Asakawa S., Ito F., Shimizu N. 1998. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54:124–131

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S., Zhivotovsky B., Nicotera P. 2003. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell. Biol. 4:552–565

    Article  CAS  PubMed  Google Scholar 

  • Partida-Sanchez S., Cockayne D.A., Monard S., Jacobson E.L., Oppenheimer N., Garvy B., Kusser K., Goodrich S., Howard M., Harmsen A., Randall T.D., Lund F.E. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Perraud A.L., Fleig A., Dunn C.A., Bagley L.A., Launay P., Schmitz C., Stokes A.J., Zhu Q., Bessman M.J., Penner R., Kinet J.P., Scharenberg A.M. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  CAS  PubMed  Google Scholar 

  • Perraud A.L., Knowles H.M., Schmitz C. 2004. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol. Immunol. 41:657–673

    Article  CAS  PubMed  Google Scholar 

  • Perraud A.L., Schmitz C., Scharenberg A.M. 2003. TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531

    Article  CAS  PubMed  Google Scholar 

  • Perraud A.L., Takanishi C.L., Shen B., Kang S., Smith M.K., Schmitz C., Knowles H.M., Ferraris D., Li W., Zhang J., Stoddard B.L., Scharenberg A.M. 2005. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J. Biol. Chem. 280:6138–6148

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V., Penzo D., Scorrano L., Bernardi P., Di Lisa F. 2001. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J. Biol. Chem. 276:12030–12034

    Article  CAS  PubMed  Google Scholar 

  • Prawitt D., Enklaar T., Klemm G., Gartner B., Spangenberg C., Winterpacht A., Higgins M., Pelletier J., Zabel B. 2000. Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum. Mol. Genet. 9:203–216

    Article  CAS  PubMed  Google Scholar 

  • Rosker C., Graziani A., Lukas M., Eder P., Zhu M.X., Romanin C., Groschner K. 2004. Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J. Biol. Chem. 279:13696–13704

    Article  CAS  PubMed  Google Scholar 

  • Runnels L.W., Yue L., Clapham D.E. 2001. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Sano Y., Inamura K., Miyake A., Mochizuki S., Yokoi H., Matsushime H., Furuichi K. 2001. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Sattler M., Verma S., Shrikhande G., Byrne C.H., Pride Y.B., Winkler T., Greenfield E.A., Salgia R., Griffin J.D. 2000. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J. Biol. Chem. 275:24273–24278

    Article  CAS  PubMed  Google Scholar 

  • Schild L., Keilhoff G., Augustin W., Reiser G., Striggow F. 2001. Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. FASEB J. 15:565–567

    CAS  PubMed  Google Scholar 

  • Schlingmann K.P., Weber S., Peters M., Niemann Nejsum L., Vitzthum H., Klingel K., Kratz M., Haddad E., Ristoff E., Dinour D., Syrrou M., Nielsen S., Sassen M., Waldegger S., Seyberth H.W., Konrad M. 2002. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31:166–170

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C., Perraud A.L. 2005. The TRPM cation channels in the immune context. Curr. Pharm. Des. 11:2765–2778

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C., Perraud A.L., Johnson C.O., Inabe K., Smith M.K., Penner R., Kurosaki T., Fleig A., Scharenberg A.M. 2003. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  CAS  PubMed  Google Scholar 

  • Scorrano L., Penzo D., Petronilli V., Pagano F., Bernardi P. 2001. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J. Biol. Chem. 276:12035–12040

    Article  CAS  PubMed  Google Scholar 

  • Stridh H., Kimland M., Jones D.P., Orrenius S., Hampton M.B. 1998. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS. Lett. 429:351–355

    Article  CAS  PubMed  Google Scholar 

  • Strubing C., Krapivinsky G., Krapivinsky L., Clapham D.E. 2001. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  CAS  PubMed  Google Scholar 

  • Tang J., Lin Y., Zhang Z., Tikunova S., Birnbaumer L., Zhu M.X. 2001. Identification of common binding sites for calmodulin and inositol 1,4,5–trisphosphate receptors on the carboxyl termini of trp channels. J. Biol. Chem. 276:21303–21310

    Article  CAS  PubMed  Google Scholar 

  • Tang Y., Tang J., Chen Z., Trost C., Flockerzi V., Li M., Ramesh V., Zhu M.X. 2000. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 275:37559–37564

    Article  CAS  PubMed  Google Scholar 

  • Tong Q., Chu X., Cheung J.Y., Conrad K., Stahl R., Barber D.L., Mignery G., Miller B.A. 2004. Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R. Am. J. Physiol. 287:C1667–1678

    Article  CAS  Google Scholar 

  • Tsavaler L., Shapero M.H., Morkowski S., Laus R. 2001. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer. Res. 61:3760–3769

    CAS  PubMed  Google Scholar 

  • Rossum D.B., Patterson R.L., Sharma S., Barrow R.K., Kornberg M., Gill D.L., Snyder S.H. 2005. Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G., Wedel B.J., Kawasaki B.T., Bird G.S., Putney J.W., Jr. 2004. Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J. Biol. Chem. 279:40521–40528

    Article  CAS  PubMed  Google Scholar 

  • Vazquez G., Wedel B.J., Trebak M., St John Bird G., Putney J.W., Jr. 2003. Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J. Biol. Chem. 278:21649–1654

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam K., Ma H.T., Ford D.L., Gill D.L. 2001. Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J. Biol. Chem. 276:33980–3395

    Article  CAS  PubMed  Google Scholar 

  • Voltz J.W., Weinman E.J., Shenolikar S. 2001. Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation. Oncogene 20:6309–6314

    Article  CAS  PubMed  Google Scholar 

  • Walder R.Y., Landau D., Meyer P., Shalev H., Tsolia M., Borochowitz Z., Boettger M.B., Beck G.E., Englehardt R.K., Carmi R., Sheffield V.C. 2002. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31:171–174

    Article  CAS  PubMed  Google Scholar 

  • Wehage E., Eisfeld J., Heiner I., Jungling E., Zitt C., Luckhoff A. 2002. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 277:23150–23156

    Article  CAS  PubMed  Google Scholar 

  • Yoon J., Ben-Ami H.C., Hong Y.S., Park S., Strong L.L., Bowman J., Geng C., Baek K., Minke B., Pak W.L. 2000. Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. J. Neurosci. 20:649–659

    CAS  Google Scholar 

  • Zhang W., Chu X., Tong Q., Cheung J.Y., Conrad K., Masker K., Miller B.A. 2003. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J. Biol. Chem. 278:16222–16229

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Hirschler-Laszkiewicz, I., Tong, Q., Conrad, K., Sun, S.-C., Penn, L., Barber, D.L., Stahl, R., Carey, D.J., Cheung, J.Y., Miller, B.A. 2006. TRPM2 is an Ion Channel Which Modulates Hematopoietic Cell Death Through Activation of Caspases and PARP Cleavage. Am. J. Physiol. 290: C1146–C1159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.A. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, B. The Role of TRP Channels in Oxidative Stress-induced Cell Death. J Membrane Biol 209, 31–41 (2006). https://doi.org/10.1007/s00232-005-0839-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0839-3

Keywords

Navigation