Skip to main content
Log in

Specificity of Membrane Binding of the Neuronal Protein NAP-22

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

NAP-22, a major protein of neuronal rafts is known to preferentially bind to membranes containing cholesterol. In this work we establish the requirements for membrane binding of NAP-22. We find that other sterols can replace cholesterol to promote binding. In addition, bilayers containing phosphatidylethanolamine bind NAP-22 in the absence of cholesterol. Thus, there is not a specific interaction of NAP-22 with cholesterol that determines its binding to membranes. Addition of a mol fraction of phosphatidylserine of 0.05 to membranes of phosphatidylcholine and cholesterol enhances the membrane binding of NAP-22. The dependence of binding on the mol fraction of phosphatidylserine indicates that NAP-22 binds to membranes with its amino-terminal segment closer to the membrane than the remainder of the protein. We have also determined which segments of NAP-22 are required for membrane binding. A non-myristoylated form binds only weakly to membranes. Truncating the protein from 226 amino acids to the myristoylated amino-terminal 60 amino acids does not prevent binding to membranes in a cholesterol-dependent manner, but this binding is of weaker affinity. However, myristoylation is not sufficient to promote binding to cholesterol-rich domains. An N-terminal 19-amino-acid, myristoylated peptide binds to membranes but without requiring specific lipids. Thus, the remainder of the protein contributes to the lipid specificity of the membrane binding of NAP-22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. B.N. Ames (1966) ArticleTitleAssay of inorganic phosphate, total phosphate and phosphatases. Meth. Enzymol. 8 115–118 Occurrence Handle1:CAS:528:DyaF1cXhvFeksQ%3D%3D

    CAS  Google Scholar 

  2. S. Boding S. Giuriato J. Ragab B.M. Humbel C. Viala C. Vieu H. Chap B. Payrastre (2001) ArticleTitleProduction of phosphatidylinositol 3,4,5-trisphosphate and phosphatidic acid in platelet rafts: evidence for a critical role of cholesterol-enriched domains in human platelet activation. Biochemistry 40 15290–15299 Occurrence Handle10.1021/bi0109313 Occurrence Handle11735411

    Article  PubMed  Google Scholar 

  3. H.M. Bomze K.R. Bulsara B.J. Iskandar P. Caron J.H. Pate Skene (2001) ArticleTitleSpinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat. Neurosci. 4 38–43 Occurrence Handle10.1038/82881 Occurrence Handle11135643

    Article  PubMed  Google Scholar 

  4. R.J. Duronio E. Jackson-Machelski R.O. Heuckeroth P.O. Olins C.S. Devine W. Yonemoto L.W. Slice S.S. Taylor J.I. Gordon (1990) ArticleTitleProtein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc. Natl. Acad. Sci. U.S.A. 87 1506–1510 Occurrence Handle2406721

    PubMed  Google Scholar 

  5. R.M. Epand S. Maekawa C.M. Yip R.F. Epand (2001) ArticleTitleProtein-induced formation of cholesterol-rich domains. Biochemistry 40 10514–10521 Occurrence Handle10.1021/bi010897s Occurrence Handle11523993

    Article  PubMed  Google Scholar 

  6. D. Frey T. Laux L. Xu C. Schneider P. Caroni (2000) ArticleTitleShared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J. Cell Biol. 149 1443–1454 Occurrence Handle10.1083/jcb.149.7.1443 Occurrence Handle10871284

    Article  PubMed  Google Scholar 

  7. S. Iino S. Kobayashi S. Maekawa (1999) ArticleTitleImmunohistochemical localization of a novel acidic calmodulin-binding protein, NAP-22, in the rat brain. Neuroscience 91 1435–1444 Occurrence Handle10.1016/S0306-4522(98)00701-5 Occurrence Handle10391449

    Article  PubMed  Google Scholar 

  8. Y. Imai Y. Matsushima T. Sugimura M. Terada (1991) ArticleTitleA simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 19 2785 Occurrence Handle1645866

    PubMed  Google Scholar 

  9. T. Laux K. Fukami M Thelen T. Golub D. Frey P. Caroni (2000) ArticleTitleGAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149 1455–1472 Occurrence Handle10.1083/jcb.149.7.1455 Occurrence Handle10871285

    Article  PubMed  Google Scholar 

  10. S. Maekawa M. Maekawa S. Hattori S. Nakamura (1993) ArticleTitlePurification and molecular cloning of a novel acidic calmodulin binding protein from rat brain. J. Biol. Chem. 268 13703–13709 Occurrence Handle8390468

    PubMed  Google Scholar 

  11. S. Maekawa C. Sato K. Kitajima N. Funatsu H. Kumanogoh Y. Sokawa (1999) ArticleTitleCholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J. Biol. Chem. 274 21369–21374 Occurrence Handle10.1074/jbc.274.30.21369 Occurrence Handle10409698

    Article  PubMed  Google Scholar 

  12. J.B. McCabe L.G. Berthiaume (2001) ArticleTitleN-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol. Biol. Cell 12 3601–3617 Occurrence Handle11694592

    PubMed  Google Scholar 

  13. S. McLaughlin J. Wang A. Gambhir D. Murray (2002) ArticleTitlePIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31 151–175 Occurrence Handle10.1146/annurev.biophys.31.082901.134259 Occurrence Handle1:CAS:528:DC%2BD38XltVynurs%3D Occurrence Handle11988466

    Article  CAS  PubMed  Google Scholar 

  14. M.I. Mosevitsky J.P. Canony G.Y. Skladchikova V.A. Novitskaya A.Y. Plekhanov V.V. Zakharov (1997) ArticleTitleThe BASP1 family of myristoylated proteins abundant in axonal termini. Primary structure analysis and physico-chemical properties. Biochimie 79 373–384 Occurrence Handle10.1016/S0300-9084(97)80032-6 Occurrence Handle1:CAS:528:DyaK2sXmsVWqtrg%3D Occurrence Handle9310187

    Article  CAS  PubMed  Google Scholar 

  15. A.L. Rozelle L.M. Machesky M. Yamamoto M.H. Driessens R.H. Insall M.G. Roth K. Luby-Phelps G. Marriott A. Hall H.L. Yin (2000) ArticleTitlePhosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10 311–320 Occurrence Handle10.1016/S0960-9822(00)00384-5 Occurrence Handle1:CAS:528:DC%2BD3cXitFegtrk%3D Occurrence Handle10744973

    Article  CAS  PubMed  Google Scholar 

  16. A. Terashita N. Funatsu M. Umeda Y. Shimada Y. Ohno-Iwashita R.M. Epand S. Maekawa (2002) ArticleTitleLipid binding activity of a neuron-specific protein NAP-22 studied in vivo and in vitro. J. Neurosci. Res. 70 172–179 Occurrence Handle10.1002/jnr.10407 Occurrence Handle1:CAS:528:DC%2BD38XnvFSltb0%3D Occurrence Handle12271466

    Article  CAS  PubMed  Google Scholar 

  17. B.L. Waarts R. Bittman J. Wilschut (2002) ArticleTitleSphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J. Biol. Chem. 277 38141–38147 Occurrence Handle10.1074/jbc.M206998200 Occurrence Handle1:CAS:528:DC%2BD38Xns1Cgu7s%3D Occurrence Handle12138173

    Article  CAS  PubMed  Google Scholar 

  18. F. Widmer P. Caroni (1990) ArticleTitleIdentification, localization, and primary structure of CAP-23, a particle-bound cytosolic protein of early development. J. Cell Biol. 111 3035–3047 Occurrence Handle2148567

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant MT-7654 from the Canadian Institutes of Health Research and a Grant-in-Aid for Scientific Research on Priority Areas (14014227) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Richard M. Epand is a Senior Investigator of the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Epand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epand, R., Maekawa, S. & Epand, R. Specificity of Membrane Binding of the Neuronal Protein NAP-22 . J. Membrane Biol. 193, 171–176 (2003). https://doi.org/10.1007/s00232-003-2015-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-003-2015-y

Keywords

Navigation