Skip to main content
Log in

Anomalous Effects of External TEA on Permeation and Gating of the A-Type Potassium Current in H. aspersa Neuronal Somata

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

The model proposed for external TEA block of Shaker K+ channels predicts a proportional relationship between TEA sensitivity and calculated electrical distance derived from measurements of voltage dependence of TEA block. In the present study, we examined this relationship for the A-type K+ current (IA) of Helix aspersa in neuronal somata using the whole-cell patch-clamp technique. External TEA inhibited IA with strong voltage dependence, such that the TEA dissociation constant was increased at depolarized test potentials. The half-inhibition constant (V0.5) for TEA block was ~21 mM at 0 mV, and V0.5 increased to ~67 mM at 50 mV. The calculated electrical distance for TEA block suggested that TEA traversed 65% of the way into the membrane electrical field. TEA also caused significant shifts in the voltage-dependence of A-type K+ channel gating. For example, at TEA concentrations below that required to fully suppress delayed outward currents, TEA caused depolarizing shifts in the voltage-dependence of A-type channel activation, steady-state inactivation, time for removal of inactivation, and slowed channel activation kinetics. Taken together, these observations suggest that TEA biased the local field potential near voltage-sensing domains of A-type K+ channels, causing the transmembrane electrical field to be relatively hyperpolarized in the presence of TEA. In summary, the calculated electrical distance of TEA block of A-type K+ channels in H. aspersa neurons is unprecedented among other K+ channels. This raises concerns about the conventional interpretation of this value. Furthermore, the voltage-dependent properties of IA are modified by TEA at concentrations previously used to isolate delayed rectifier potassium channels (IKDR) selectively. This lack of specificity has important implications for recent, as well as future studies of IA in H. aspersa and possibly other snail neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denton, J., Leiter, J. Anomalous Effects of External TEA on Permeation and Gating of the A-Type Potassium Current in H. aspersa Neuronal Somata . J. Membrane Biol. 190, 17–28 (2002). https://doi.org/10.1007/s00232-002-1021-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-002-1021-9

Keywords

Navigation