Skip to main content
Log in

Energy correlation of heat transfer for drag reduction surfactant solution in a double pipe heat exchanger

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present study, the effects of surfactant solutions on pressure drop properties and heat transfer characteristics in a double pipe heat exchanger have been investigated. An ionic surfactant (SDS) and two nonionic surfactants (NP-10 and Tween 80) solutions with 0.2 wt% are utilized at different flow rates. The results show that pressure drops for surfactant solutions are lower than those for water at equivalent flow rates. NP-10 demonstrates high drag reduction values, reaching a maximum of approximately 15%, whereas Tween 80 has lower drag reduction values, which vary according to the flow rate. Besides, Nusselt number for water in this study reveals a satisfactory agreement with the predictions derived from the Dittus-Boelter equation with a difference of 2.1%. While NP-10 and Tween 80 addition cause the Nusselt number to decline, SDS does not significantly alter it when compared to water. Energy correlations with high R2 values have been developed using experimental data for water and surfactant solutions. Furthermore, enhancement factors (η), the ratio of heat transferred at constant pumping power with and without surfactant, have been calculated. The η values vary within a range of 0.8‒1.1 depending on the flow rate, and for SDS solution, these values are above 1 when the Reynolds number is in the range of 13000–25000. In the case of NP-10 and Tween 80 solution, the η values are below 1 for the whole flow rate range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Heat transfer surface area (m2)

cp :

Specific heat capacity (J· kg−1·K−1)

d:

Tube diameter (m)

Dh :

Hydraulic diameter (m)

DR(%):

Percent drag reduction (%)

EF :

Enhancement factor

f:

Friction factor

h:

Convective heat transfer coefficient (W·mK1)

k:

Thermal conductivity of tube material (W·mK1)

L:

Length of test section (m)

\(\dot{m}\) :

Mass flow rate (kg·s1)

Nu:

Nusselt number

Pr:

Prandtl number

\(\dot{P}\) :

Pumping power (W)

ΔP:

Pressure drop (Pa)

Q:

Total heat transfer rate (W)

Re:

Reynolds number

RHP:

The ratio of heat transfer to pumping power

T:

Temperature (K)

ΔΤLM :

Logarithmic temperature difference

u:

Velocity (m·s1)

Uo :

Overall heat transfer coefficient (W·mK1)

wR :

Uncertainty in R parameter

X:

Energy dissipation parameter

\(\upvarepsilon\) :

The energy dissipation per unit mass of the fluid (W·kg1)

ρ:

Density (kg·m3)

μ:

Dynamic viscosity (Pa·s)

Ψ:

Volumetric flow rate (L·min1)

c:

Cold

h:

Hot

i:

Inside

o:

Outside

s:

Surfactant solution

w:

Water

References

  1. Virk PS (1975) Drag reduction fundamentals. AIChE J 21:625–656. https://doi.org/10.1002/AIC.690210402

    Article  Google Scholar 

  2. Toms BA (1949) Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: Proc 1st Int Congr Rheol, vol 2. pp 135–141

    Google Scholar 

  3. Kadhim BJ, Mahdy OS, Alsaedi SS et al (2023) Effect of rigid xanthan gums (RXGs) on flow and pressure drops to improve drag reduction rates in horizontal pipe flow. ChemEngineering 7:36. https://doi.org/10.3390/CHEMENGINEERING7020036

    Article  Google Scholar 

  4. Kameneva MV (2012) Microrheological effects of drag-reducing polymers in vitro and in vivo. Int J Eng Sci 59:168–183. https://doi.org/10.1016/J.IJENGSCI.2012.03.014

    Article  Google Scholar 

  5. Sheng Y, Jiang N, Sun X et al (2018) Experimental study on effect of foam stabilizers on aqueous film-forming foam. Fire Technol 54:211–228. https://doi.org/10.1007/S10694-017-0681-Z

    Article  Google Scholar 

  6. Gu Y, Yu S, Mou J et al (2020) Research progress on the collaborative drag reduction effect of polymers and surfactants. Mater 13:444. https://doi.org/10.3390/MA13020444

    Article  Google Scholar 

  7. Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 39:991–1003. https://doi.org/10.1016/S1290-0729(00)01191-1

    Article  Google Scholar 

  8. White CM, Mungal MG (2008) Mechanics and prediction of turbulent drag reduction with polymer additives. Annu Rev Fluid Mech 40:235–256. https://doi.org/10.1146/ANNUREV.FLUID.40.111406.102156

    Article  MathSciNet  Google Scholar 

  9. Abubakar A, Al-Wahaibi T, Al-Wahaibi Y et al (2014) Roles of drag reducing polymers in single- and multi-phase flows. Chem Eng Res Des 92:2153–2181. https://doi.org/10.1016/J.CHERD.2014.02.031

    Article  Google Scholar 

  10. Xi L (2019) Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Phys Fluids 31:121302. https://doi.org/10.1063/1.5129619/1058941

    Article  Google Scholar 

  11. Zakin JL, Lu B, Bewersdorff HW (1998) Surfactant drag reduction. Rev Chem Eng 14:253–320. https://doi.org/10.1515/REVCE.1998.14.4-5.253/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  12. Kanti HBM, Prakash PK, Sridhara SB (2023) Investigation of entropy generation and thermohydraulic characteristics of Al2O3–CuO hybrid nanofluid flow in a pipe at different inlet fluid temperatures. Int J Therm Sci 193:108541. https://doi.org/10.1016/J.IJTHERMALSCI.2023.108541

    Article  Google Scholar 

  13. Vicki Wanatasanappan V, Kumar Kanti P, Sharma P et al (2023) Viscosity and rheological behavior of Al2O3-Fe2O3/water-EG based hybrid nanofluid: A new correlation based on mixture ratio. J Mol Liq 375:121365. https://doi.org/10.1016/J.MOLLIQ.2023.121365

    Article  Google Scholar 

  14. Kanti P, Sharma KV, Ramachandra CG, Panitapu B (2020) Stability and thermophysical properties of fly ash nanofluid for heat transfer applications. Heat Transf 49:4722–4737. https://doi.org/10.1002/HTJ.21849

    Article  Google Scholar 

  15. Kanti PK, Sharma P, Maiya MP, Sharma KV (2023) The stability and thermophysical properties of Al2O3-graphene oxide hybrid nanofluids for solar energy applications: application of robust autoregressive modern machine learning technique. Sol Energy Mater Sol Cells 253:112207. https://doi.org/10.1016/J.SOLMAT.2023.112207

    Article  Google Scholar 

  16. Kanti P, Sharma KV, Khedkar RS, Rehman TU (2022) Synthesis, characterization, stability, and thermal properties of graphene oxide based hybrid nanofluids for thermal applications: Experimental approach. Diam Relat Mater 128:109265. https://doi.org/10.1016/J.DIAMOND.2022.109265

    Article  Google Scholar 

  17. Kumar Kanti P, Sharma P, Sharma KV, Maiya MP (2023) The effect of pH on stability and thermal performance of graphene oxide and copper oxide hybrid nanofluids for heat transfer applications: application of novel machine learning technique. J Energy Chem 82:359–374. https://doi.org/10.1016/J.JECHEM.2023.04.001

    Article  Google Scholar 

  18. Altun A, Şara ON, Şimşek B (2021) A comprehensive statistical approach for determining the effect of two non-ionic surfactants on thermal conductivity and density of Al2O3–water-based nanofluids. Colloids Surf Physicochem Eng Asp 626:127099. https://doi.org/10.1016/J.COLSURFA.2021.127099

    Article  Google Scholar 

  19. Li FC, Yu B, Wei JJ, Kawaguchi Y (2012) Turbulent drag reduction by surfactant additives. John Wiley & Sons

    Google Scholar 

  20. Qi Y, Kawaguchi Y, Lin Z et al (2001) Enhanced heat transfer of drag reducing surfactant solutions with fluted tube-in-tube heat exchanger. Int J Heat Mass Transf 44:1495–1505. https://doi.org/10.1016/S0017-9310(00)00203-9

    Article  Google Scholar 

  21. Wei JJ, Kawaguchi Y, Li FC et al (2009) Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution. Int J Heat Mass Transf 52:3547–3554. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2009.03.008

    Article  Google Scholar 

  22. Gomaa A, Aly WIA, Omara M, Abdelmagied M (2014) Correlations for heat transfer coefficient and pressure drop in the annulus of concentric helical coils. Heat Mass Transf 50:583–586. https://doi.org/10.1007/S00231-013-1258-0

    Article  Google Scholar 

  23. Mohammadi S, Hormozi F, Rad EH (2021) Effects of surfactants on thermal performance and pressure drop in mini-channels- an experimental study. J Taiwan Inst Chem Eng 128:430–442. https://doi.org/10.1016/J.JTICE.2021.05.021

    Article  Google Scholar 

  24. Patist A, Bhagwat SS, Penfield KW et al (2000) On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. 3:53–58. https://doi.org/10.1007/s11743-000-0113-4

    Article  Google Scholar 

  25. Zhang L, Guo X, Zhang B, Ren T (2019) Synthesis of nonylphenol polyoxyethylene oligomer and application as an effective dispersant in pyraclostrobin suspension concentrate. Des Monomers Polym 22:122–129. https://doi.org/10.1080/15685551.2019.1616374

    Article  Google Scholar 

  26. Hammouda B (2013) Temperature effect on the nanostructureof SDS micelles in water. J Res Natl Inst Stand Technol 118:151. https://doi.org/10.6028/jres.118.008

    Article  Google Scholar 

  27. Isobaric Properties for Water. NIST Standard Reference Database 69: NIST Chemistry WebBook. https://webbook.nist.gov/cgi/fluid.cgi?P=1&TLow=298&THigh=338&TInc=10&Digits=5&ID=C7732185&Action=Load&Type=IsoBar&TUnit=K&PUnit=atm&DUnit=kg%2Fm3&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=Pa*s&STUnit=N%2Fm&RefState=DEF. Accessed 25 June 2023

  28. Hetsroni G, Gurevich M, Mosyak A, Rozenblit R (2004) Drag reduction and heat transfer of surfactants flowing in a capillary tube. Int J Heat Mass Transf 47:3797–3809. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2004.03.009

    Article  Google Scholar 

  29. Ramahlinga T, Raghavan VR, Ramahlinga T, Raghavan VR (2011) The Tube side heat transfer coefficient for enhanced double tube by Wilson Plot Analysis. J Appl Sci 11:1725–1732. https://doi.org/10.3923/JAS.2011.1725.1732

    Article  Google Scholar 

  30. Doruk S, Şara ON, Karaipekli A, Yapıcı S (2017) Heat transfer performance of water and nanoencapsulated n-nonadecane based nanofluids in a double pipe heat exchanger. Heat Mass Transf (Und Stoffuebertragung) 53:3399–3408. https://doi.org/10.1007/S00231-017-2072-X

    Article  Google Scholar 

  31. Dirker J, Meyer JP (2005) Convective heat transfer coefficients in concentric annuli. Heat Transf Eng 26:38–44. https://doi.org/10.1080/01457630590897097

    Article  Google Scholar 

  32. Beckwith TG, Buck NL, Marangoni RD (2006) Mechanical measurements, 6th edn. Pearson

    Google Scholar 

  33. Yapici S (1999) Energetic correlation of local mass transfer in swirling pipe flow. Ind Eng Chem Res 38:1712–1717. https://doi.org/10.1021/ie9803927

    Article  Google Scholar 

  34. Yilmaz M, Yapici S, Çmakli Ö, Şara ON (2002) Energy correlation of heat transfer and enhancement efficiency in decaying swirl flow. Heat Mass Transf (Und Stoffuebertragung) 38:351–358. https://doi.org/10.1007/s002310100207

    Article  Google Scholar 

  35. Yilmaz M, Sara O, Karsli S (2001) Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int J 1:278–294. https://doi.org/10.1016/s1164-0235(01)00034-6

    Article  Google Scholar 

  36. Kotenko M, Oskarsson H, Bojesen C, Nielsen MP (2019) An experimental study of the drag reducing surfactant for district heating and cooling. Energy 178:72–78. https://doi.org/10.1016/J.ENERGY.2019.03.134

    Article  Google Scholar 

  37. Huang C, Liu D, Wei J (2016) Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels. Chem Eng Sci 152:267–279. https://doi.org/10.1016/J.CES.2016.06.009

    Article  Google Scholar 

  38. Saeki T, Kaide A (2021) Flow characteristics of drag-reducing surfactant solutions. MATEC Web Conf 333:02002. https://doi.org/10.1051/MATECCONF/202133302002

    Article  Google Scholar 

  39. Tamano S, Itoh M, Kato K, Yokota K (2010) Turbulent drag reduction in nonionic surfactant solutions. Phys Fluids 22:1–12. https://doi.org/10.1063/1.3407666/257521

    Article  Google Scholar 

  40. Aly WIA, Inaba H, Haruki N, Horibe A (2006) Dragand heat transfer reduction phenomena of drag-reducing surfactant solutions in straight and helicalpipes. J Heat Transf 128:800–810. https://doi.org/10.1115/1.2217751

    Article  Google Scholar 

  41. Bari HAA, Letchmanan K, Yunus RM (2011) Drag reduction characteristics using aloe vera natural mucilage: An experimental study. J Appl Sci 11:1039–1043

    Article  Google Scholar 

  42. Drappier J, Divoux T, Amarouchene Y et al (2006) Turbulent drag reduction by surfactants. Europhys Lett 74:362. https://doi.org/10.1209/EPL/I2005-10519-X

    Article  Google Scholar 

  43. Li FC, Kawaguchi Y, Hishida K (2009) Experimental study on the mechanism of turbulent heat transfer in drag reducing flow by surfactant additives. In: Symposium on turbulence control. pp 1–12

    Google Scholar 

  44. Krope A, Lipus LC (2010) Drag reducing surfactants for district heating. Appl Therm Eng 30:833–838. https://doi.org/10.1016/J.APPLTHERMALENG.2009.12.012

    Article  Google Scholar 

  45. Karjiban RA, Basri M, Rahman MBA, Salleh AB (2012) Structural properties of nonionic Tween80 micelle in water elucidated by molecular dynamics simulation. APCBEE Proc 3:287–297. https://doi.org/10.1016/J.APCBEE.2012.06.084

    Article  Google Scholar 

  46. Incropera F, Dewitt D (1985) Introduction to heat transfer. John Wiley and Sons Inc, New York, NY

    Google Scholar 

  47. Sieder EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 28:1429–1435. https://doi.org/10.1021/IE50324A027/ASSET/IE50324A027.FP.PNG_V03

    Article  Google Scholar 

  48. Sato K, Chu R, Kumada M (2003) Heat transfer enhancement using turbulent promoters for drag-reducing surfactant aqueous solution Flow. J Enhanc Heat Transf 10:301–309. https://doi.org/10.1615/JENHHEATTRANSF.V10.I3.50

    Article  Google Scholar 

  49. Li Y, Chang G, Zhao W et al (2022) Effects of surfactant CTAB on performance of flat-plate CLPHP based on PEMFC cooling. Int J Heat Mass Transf 196:123226. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2022.123226

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Bon A. A. Ramamonjisoa: Investigation, Methodology, Experiments, Writing – original draft. Aycan Altun: Investigation, Experiments, Methodology, Data curation, Writing – review & editing. Osman Nuri Şara: Methodology, Conceptualization, Writing – review & editing, Visualization, Investigation, Writing – original draft, Supervision.

Corresponding author

Correspondence to Osman Nuri Şara.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramamonjisoa, B.A.A., Altun, A. & Şara, O.N. Energy correlation of heat transfer for drag reduction surfactant solution in a double pipe heat exchanger. Heat Mass Transfer 60, 651–663 (2024). https://doi.org/10.1007/s00231-024-03461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-024-03461-4

Navigation