Skip to main content
Log in

Augmentation of Heat Transfer of High Prandtl Number Fe3O4/vacuum pump oil nanofluids flow in a tube with twisted tape inserts in laminar flow

  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The heat transfer coefficient and friction factor of Fe3O4/vacuum pump oil nanofluids flowing in a tube with twisted tape inserts were analyzed experimentally. The experiments were conducted for different mass flow rates (0.04 kg/s to 0.208 kg/s), volume concentrations (0.05% to 0.5%), Prandtl numbers (440 to 2534), Graetz numbers (500 to 3000) and twisted tape inserts (H/D = 5, 10 and 15). Results reveal that the Nusselt number is enhanced by 8.94% and 13.48% for the 0.5% nanofluid for the mass flow rates of 0.0416 kg/s and 0.208 kg/s, respectively, relative to the base fluid. For the mass flow rate of 0.208 kg/s with 0.5 vol. % nanofluid, the friction factor penalty is 1.21-times compared to the base fluid. By using twisted tape insert of H/D = 5, the Nusselt number is further enhanced by 23.86% and 39.53% for the 0.5% nanofluid for mass flow rates of 0.0416 kg/s and 0.208 kg/s, respectively, relative to the base fluid. For the twisted tape insert of H/D = 5 with mass flow rate of 0.208 kg/s and 0.5 vol. % nanofluid, the friction factor penalty is 1.44-times compared to the base fluid. New Nusselt number and friction factor correlations are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Area (m2)

Cp :

Specific heat (J/kg K)

D :

Inner tube diamter (mm)

Do :

Outer tube diameter (mm)

f :

friction factor

Gz :

Greatz number, RePrD/L

h :

heat transfer coefficient, (W/m2K)

H :

Helix (mm)

I :

Current

k :

Thermal conductivity (W/m K)

L :

Length (mm)

\( \dot{\boldsymbol{m}} \) :

Mass flow rate (kg/s)

Pr :

Prandtl number, (μ × Cp/k)

Q h :

Heat supplied (W)

Q a :

Heat absorbed by the fluid (W)

Q avg :

Average of Qh and Qa

Re :

Reynolds number \( \left(\mathbf{4}\dot{\boldsymbol{m}}/\boldsymbol{\pi} \boldsymbol{D}\boldsymbol{\mu } \right) \)

T :

Temperature (oC)

V :

Voltage

v :

velocity of the fluid (m/s)

ρ :

Density (kg/m3)

ϕ :

Particle vol. concentration (%)

Δ P :

Pressure drop

μ :

Viscosity (mPa.s)

i:

inlet

o:

outlet

w:

Wall

b:

Bulk

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, FED-V.231/MD-V.66. ASME, New York: 99–105.

  2. Hiegeister R, Andra W, Buske N, Hergt R, Hilger I, Richter U, Kaiser W (1999) Application of magnetite ferrofluids for hyperthermia. J Magnetism Magnetic Mater 201:420–422. https://doi.org/10.1016/S0304-8853(99)00145-6

    Article  Google Scholar 

  3. Nakamura M, Decker K, Chosy J, Comella K, Melnik K, Moore L, Lasky LC, Zborowski M, Chalmers JJ (2001) Separation of a breast cancer cell line from human blood using a quadrupole magnetic flow sorter. Bio Progress 17:1145–1155. https://doi.org/10.1021/bp010109q

    Article  Google Scholar 

  4. Zborowski M, Sun L, Moore LR, Williams PS, Chalmers JJ (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magnetism Magnetic Mater 194:224–230. https://doi.org/10.1016/S0304-8853(98)00581-2

    Article  Google Scholar 

  5. Miller MM, Prinz GA, Cheng SF, Bounnak S (2002) Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. App Phys Letters 81:2211–2213. https://doi.org/10.1063/1.1507832

    Article  Google Scholar 

  6. Shuchi S, Sakatani K, Yamaguchi H (2005) An application of a binary mixture of magnetic fluid for heat transport devices. J Magnetism Magnetic Mater 289:257–259. https://doi.org/10.1016/j.jmmm.2004.11.073

    Article  Google Scholar 

  7. Sha L, Ju Y, Zhang H, Wang J (2017) Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field. App Therm Eng 113:566–574. https://doi.org/10.1016/j.applthermaleng.2016.11.060

    Article  Google Scholar 

  8. Ma J, Xu Y, Li W, Zhao J, Zhang S, Basov S (2013) Experimental investigation into the forced convective heat transfer of aqueous Fe3O4 nanofluids under transition region. J Nanoparticles 601363:1–5. https://doi.org/10.1155/2013/601363

    Article  Google Scholar 

  9. Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Isfahani TD, Zabihi F, Sabbaghzadeh J (2010) Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J Magnetism Magnetic Mater 322:3508–3513. https://doi.org/10.1016/j.jmmm.2010.06.054

    Article  Google Scholar 

  10. Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal and Fluid Sci 30:109–116. https://doi.org/10.1016/j.expthermflusci.2005.03.021

    Article  Google Scholar 

  11. Sundar LS, Naik MT, Sharma KV, Singh MK, Siva Reddy TC (2012) Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Thermal Fluid Sci 37:65–71. https://doi.org/10.1016/j.expthermflusci.2011.10.004

    Article  Google Scholar 

  12. Smithberg E, Landis F (1964) Friction and forced convection heat transfer characteristics in tubes with twisted-tape swirl generators. J Heat Transfer 86:39–49. https://doi.org/10.1115/1.3687060

    Article  Google Scholar 

  13. Lopina RF, Bergles AE (1969) Heat transfer and pressure drop in tape generated swirl flow of single phase water. J Heat Transfer 91:434–442. https://doi.org/10.1115/1.3580212

    Article  Google Scholar 

  14. Thorsen R, Landis F (1968) Friction and heat transfer characteristics in turbulent swirl flow subjected to large transverse temperature gradients. J Heat Transfer 90:87–98. https://doi.org/10.1115/1.3597466

    Article  Google Scholar 

  15. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes: Part 1-Laminar flows. J Heat Transfer 115:881–889. https://doi.org/10.1115/1.2911383

    Article  Google Scholar 

  16. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes: Part II-Transition and turbulent flows. J. Heat Trans 115:890–896. https://doi.org/10.1115/1.2911384

    Article  Google Scholar 

  17. Kishore PS (2001) Experimental and theoretical studies of convective momentum and heat transfer in tubes with twisted tape inserts, Ph.D. Thesis, Andhra University, India.

  18. Sarma PK, Subramanyam T, Kishore PS, Dharma Rao V, Kakac S (2003) Laminar convective heat transfer with twisted tape inserts in a tube. Int J Thermal Sci 42:821–828. https://doi.org/10.1016/S1290-0729(03)00055-3

    Article  Google Scholar 

  19. Sundar LS, Sharma KV (2010) Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf 53:1409–1416. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016

    Article  MATH  Google Scholar 

  20. Sundar LS, Ravi Kumar NT, Naik MT, Sharma KV (2012) Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study. Int J Heat Mass Transf 55:2761–2768. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.040

    Article  Google Scholar 

  21. Sharma KV, Sundar LS, Sharma PK (2009) Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Comm Heat Mass Transf 36:503–507. https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011

    Article  Google Scholar 

  22. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S (2014) Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts. Int J Thermal Sci 81:84–93. https://doi.org/10.1016/j.ijthermalsci.2014.03.002

    Article  Google Scholar 

  23. Pathipakka G, Sivashanmugam P (2010) Heat transfer behaviour of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow. Super lattice Microstructures 47(2):349–360. https://doi.org/10.1016/j.spmi.2009.12.008

    Article  Google Scholar 

  24. Sundar LS, Singh MK, Sousa ACM (2013) Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Comm Heat Mass Transf 49:17–24. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026

    Article  Google Scholar 

  25. Sieder EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 28:1429–1439. https://doi.org/10.1021/ie50324a027

    Article  Google Scholar 

  26. Yu W, Xie H, Li Y, Chen L, Wang Q (2012) Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid. Powder Technol 230:14–19. https://doi.org/10.1016/j.powtec.2012.06.016

    Article  Google Scholar 

  27. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038

    Article  Google Scholar 

  28. Incropera FP, Dewitt DP (1996) Introduction to heat transfer, 3rd edn. John Wiley & Sons Inc., New York

    Google Scholar 

Download references

Acknowledgment

The authors LSS, AMBP and ACMS would like to acknowledge funding from FCT (Fundação para a Ciência e Tecnologia, Portugal) through grants: UIDB/EMS/00481/2020; UIDP/00481/2020 and FCT- Infrastructures support CENTRO-01-0145-FEDER-022083. The author LSS also acknowledge Fundação para a Ciência e Tecnologia, Portugal for his grant: Ref. 045-88-ARH/2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Syam Sundar or Manoj K. Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundar, L.S., Singh, M.K., Pereira, A.M. et al. Augmentation of Heat Transfer of High Prandtl Number Fe3O4/vacuum pump oil nanofluids flow in a tube with twisted tape inserts in laminar flow. Heat Mass Transfer 56, 3111–3125 (2020). https://doi.org/10.1007/s00231-020-02913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02913-x

Keywords

Navigation