Skip to main content
Log in

Modification of heat transfer correlations in a liquid–solid fluidized bed heat exchanger with cylindrical particles in aggregative fluidization

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Most correlations presented for the heat transfer coefficient of liquid–solid fluidized bed heat exchangers are based on experiments with glass bead particles in particulate fluidization which usually under-predict the heat transfer coefficient. The present study used experimental data from previous studies for the heat transfer coefficient in liquid–solid fluidized bed heating systems using cylindrical metal particles and five heat transfer correlations based on experiments with spherical glass beads to approximate the behavior of the cylindrical metal particles under aggregative conditions. The results show that modifying the correlations significantly improved the prediction of heat transfer coefficients and the average relative error decreased in comparison with those for the original correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Ar:

Archimedes number

Cpl :

Liquid heat capacity

Cps :

Particle heat capacity

d:

Diameter

deq :

Equivalent diameter

deff :

Effective diameter

dp :

Particle diameter

D:

Fluidized bed diameter

Dh :

Hydraulic diameter of fluidized bed

Nup :

Nusselt number based on particle diameter

Pr:

Prandtle number

Rep :

Particle Reynolds number

Re +h :

Modified Reynolds number \(= (ud_{p} /\varepsilon \nu ).\left( {2\pi^{2} \varepsilon^{2} /\left( {1 - \varepsilon } \right)^{2} } \right)^{1/3}\)

u:

Velocity

us :

Superficial velocity

umf :

Minimum fluid velocity

ut :

Particle terminal velocity

Vf :

Fluid volume

Vs :

Particle volume

\(\alpha\) :

Heat transfer coefficient

\(\varepsilon\) :

Bed voidage

\(\lambda_{l}\) :

Liquid thermal conductivity

\(\lambda_{s}\) :

Particle thermal conductivity

\(\rho_{l}\) :

Liquid density

\(\rho_{s}\) :

Solid density

\(\nu\) :

Kinematic viscosity

References

  1. Pork P, Infante Ferreira CA, Witkamp GJ (2009) Prevention of fouling and scaling in stationary and circulating liquid-solid fluidized bed heat exchanger: Particle impact measurements and analysis. Int J Heat Mass Transf 52:3857–3868

    Article  MATH  Google Scholar 

  2. Pork P, Infante Ferreira CA, Witkamp GJ (2010) Mitigation of ice crystallization fouling in stationary and circulating liquid-solid fluidized bed heat exchangers. Int J Heat Mass Transf 53:403–411

    Article  Google Scholar 

  3. Jamialahmadi M, Muller SH (2007) Heat exchanger fouling and cleaning in the dehydrate process for the production of phosphoric Acid. Chem Eng Res Des 85(2):245–255

    Article  Google Scholar 

  4. Klaren GD, Eric de Boer F (2005) Compact self-cleaning fluidized bed heat exchangers with EM baffles. Engineering Conferences International Symposium Series, 2

  5. Xiaokai X, Chongfang M, Yongchang C (2005) Mechanism of calcium carbonate scale depositition under sub cooled flow boiling conditions. Chin J Chem Eng 13(4):464–470

    Google Scholar 

  6. Helalizade A, Muller SH, Jamalahmadi M (2003) Crystallization fouling of mixed salts during convective heat transfer and sub cooled flow boiling conditions. Engineering Conferences International, RP1

  7. Fahiminia F, Watkinson AP, Epstein N (2003) Investigation of initial fouling rates of calcium sulfate solutions under non-boiling conditions. Engineering Conferences International Symposium Series, Digital Archives

  8. Haid M (1997) Correlations for the prediction of heat transfer to liquid-solid fluidized beds. Chem Eng Process 36(2):143–147

    Article  Google Scholar 

  9. Jamialahmadi M, Malayeri MR, Muller SH (1995) Predication of heat transfer to liquid- solid fluidized beds. Can J Chem Eng 73(4):444–455

    Article  Google Scholar 

  10. Jamialahmadi M, Malayeri MR, Muller SH (1996) A unified correlation for the predication of heat transfer coefficient liquid-solid fluidized bed systems. J Heat Transfer 118(4):952–959. doi:10.1115/1.2822594

    Article  Google Scholar 

  11. Haid M, Martin H, Müller SH (1994) Heat transfer to liquid–solid fluidized beds. Chem Eng Process 33(4):211–225

    Article  Google Scholar 

  12. Yang Wen-Ching (2003) Hand book of fluidization and fluid-particle systems. Marcel Decker, New York

    Book  Google Scholar 

  13. Aghajani M, Muller-Steinhagen H, Jamialahmadi M (2004) Experimental results and models for solid/liquid fluidized beds involving newtonian and non-newtonian liquids. Dev Chem Eng Miner Process 12(3/4):403–426

    Google Scholar 

  14. Klaren GD, Eric de Boer F (2004) Case study involving severely fouling heat transfer: design and operating experience of a self-cleaning fluidized bed heat exchanger and its comparison with the newly developed compact self-cleaning fluidized bed heat exchanger with EM baffles. Presented at the Fachveranstaltung: Verminderung der Ablagerungsbildung an Warmeubertragerflachen, Bad Durkheim, Germany, October 2004

  15. Richardson JF, Romani MN, Shakiri KJ (1976) Heat transfer from immersed surfaces in liquid fluidized beds. Chem Eng Sci 31(8):619–624

    Article  Google Scholar 

  16. Wallis GB (1969) One-dimensional waves in two-component flow (with particular reference to the stability of fluidized beds). United Kingdom Atomic energy Authority Report, AEEW-R 162, Harwell, UK

  17. Slis PL, Willemes ThW, Kramers H (1959) The response of the level of a liquid fluidized bed to a sudden change in the fluidizing velocity. Appl Sci Res A 8(1):209–218

    Article  MATH  Google Scholar 

  18. Richardson JF, Zaki WN (1954) Sedimentation and fluidization: part I. Trans Inst Chem Eng 32:35–53

    Google Scholar 

  19. Foscolo PU, Gibilaro LG (1984) A fully predictive criterion for the transition between particulate and aggregate fluidization. Chem Eng Sci 39:1667–1675

    Article  Google Scholar 

  20. Gibilaro LG, Hussein I, Foscolo PU (1986) Aggregative behavior of liquid fluidized beds. Can J Chem Eng 64:931–938

    Article  Google Scholar 

  21. Aghajani M, Muller-Steinhagen H, Jamialahmadi M (2004) Heat transfer of liquid/solid fluidized bed for newtonian and non-newtonian fluids. Iran J Chem Chem Eng 23(1):119–130

    Google Scholar 

  22. Jamialahmadi M, Muller SH (2000) Hydrodynamics and heat transfer of liquid fluidized bed system. Chem Eng Commun 179(1):35–79

    Article  Google Scholar 

  23. Kang Y, Fan LT, Kim SD (1991) Immersed heater-to-bed heat transfer in liquid-solid fluidized beds. AIChE J 37(7):1101–1106

    Article  Google Scholar 

  24. Aghajani M, Muller-Steinhagen H, Jamialahmadi M (2005) New design equation for liquid/solid fluidized bed heat exchangers. Int J Heat Mass Transf 48:317–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Hatamipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddahi, M.H., Hatamipour, M.S. & Jamialahmadi, M. Modification of heat transfer correlations in a liquid–solid fluidized bed heat exchanger with cylindrical particles in aggregative fluidization. Heat Mass Transfer 52, 2391–2400 (2016). https://doi.org/10.1007/s00231-015-1747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1747-4

Keywords

Navigation