Skip to main content
Log in

Investigation on the relative performance of various low-Reynolds number turbulence models for buoyancy-driven flow in a tall cavity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study deals with the numerical investigation of turbulent buoyancy driven flow in a differentially heated rectangular cavity with adiabatic horizontal walls. The aspect ratio of cavity is 5 and the Rayleigh number based on the cavity height is 4.56 × 1010. The computations have been carried out using the finite volume method on a staggered grid and SIMPLEC algorithm for pressure–velocity coupling. The low-Reynolds number \(k-\epsilon\) model proposed by Yang and Shih (YS), low-Reynolds number \(k-\omega\) model proposed by Wilcox, and \(k-\omega\) shear stress transport (SST) model of Menter have been applied for turbulence closure. The performance comparison of different models have been carried out using the experimental, LES and various RANS results available in the literature. The computation of turbulent natural convection flow is numerically challenging due to complex flow involving laminar, transition and turbulent regions, coupling of velocity with the energy equation, and some other problems reported in literature e.g. grid dependency of solution, numerical stability problem, etc. The flux Richardson number is calculated to get an estimate of relative importance of buoyancy and shear force in different regions of flow. The shearing and swirling zones have been identified in the entire flow domain using the \(\lambda _{2}\) criterion. Based on the comparison of mean flow, heat transfer and turbulence characteristics with the available results, it has been found that YS model performs better. The better performance obtained from YS model may be due to peculiarity of model that takes into account the Kolmogorov time scale near the wall and the conventional time scale \((k/\epsilon )\) away from the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(b\) :

Width of the cavity (m)

\(c_{p}\) :

Specific heat at constant pressure (J kg−1 K−1)

\(d\) :

Non-dimensional distance from the nearest wall

\(g\) :

Acceleration due to gravity (m s−2)

\(H\) :

Heigth of the cavity (m)

\(k\) :

Turbulent kinetic energy (m2 s−2)

\(k_f\) :

Thermal conductivity of fluid (W/m2K)

\(Nu_{local}\) :

Nusselt number \(h_{y}H/k_f\)

\(\overline{p_{0}}\) :

Ambient pressure (Pa)

\(\overline{p}\) :

Static pressure (Pa)

\(P\) :

Non-dimensional static pressure

\(Pr\) :

Prandtl number, \(\nu /\alpha\)

\(Pr_{t}\) :

Turbulent Prandtl number

\(Ra\) :

Rayleigh number, \(g\beta \Delta TH^{3} /\nu \alpha\)

\(Re_{t}\) :

Turbulent Reynolds number, \({k^{2}}/{\nu \epsilon } \, \hbox {or} \, k/\nu \omega\)

\(Re_{y}\) :

Non-dimensional distance, \({\sqrt{k}y}/{\nu }\)

\(T\) :

Dimensional temperature (K)

\(T^{+}\) :

Dimensionless temperature \(({T_{w}-T})/{T_{\tau }}\)

\(T_{\tau }\) :

Friction temperature, \({q}/{\rho c_{p}u_{\tau }}\) (K)

\(T_{c}\) :

Temperature of cold wall of the cavity (K)

\(T_{h}\) :

Temperature of hot wall of the cavity (K)

\(\overline{u^{\prime }v^{\prime }}\) :

Reynolds shear stress (m2 s−2)

\(\overline{u},\,\overline{v}\) :

Dimensional mean velocities in \(x,\,y\)-directions, respectively (m s−1)

\(U,\,V\) :

Non-dimensional velocities in \(X,\,Y\)-directions, respectively

\(u^{\prime },\, v^{\prime }\) :

Fluctuating components of velocities in \(x\) and \(y\)-directions, respectively (m s−1)

\(U_{0}\) :

Reference velocity, \(\sqrt {g\beta {\Delta }TH}\) (m s−1)

\(u_{\tau }\) :

Friction velocity, \(\sqrt{{\tau _{w}}/{\rho }}\) (m s−1)

\(v^{+}\) :

Non-dimensional velocity, \({\overline{v}}/{u_{\tau }}\)

\(X,\,Y\) :

Non-dimensional coordinates

\(x,\,y\) :

Dimensional coordinates (m)

\(x^{+}\) :

Non-dimensional distance, \({xu_{\tau }}/{\nu }\)

\(y^{+}\) :

Non-dimensional distance, \({yu_{\tau }}/{\nu }\)

\(\alpha ,\alpha _{t}\) :

Laminar and turbulent thermal diffusivities, respectively (m2 s−1)

\(\beta\) :

Coefficient of thermal expansion (K−1)

\(\chi\) :

von Karman constant

\({\Delta }T\) :

Temperature difference between hot and cold wall of the cavity \(( T_{h}-T_{c})\) (K)

\(\epsilon\) :

Rate of dissipation of turbulent kinetic energy (m2 s−3)

\(\nu ,\,\nu _{t}\) :

Laminar and turbulent kinematic viscosities, respectively (m2 s−1)

\(\omega\) :

Rate of specific dissipation (s−1)

\(\omega _{xy}\) :

Vorticity in \(x-y\) plane (s−1)

\(\rho\) :

Density (kg m−3)

\(\tau _{w}\) :

Wall shear stress (Pa)

\(\theta\) :

Non-dimensional temperature

\(n\) :

Non-dimesional quantity

\(p\) :

Corresponds to the first near-wall grid point

\(w\) :

Corresponds to wall

References

  1. Paolucci S, Chenweth DR (1989) Transition to choas in a differentially heated vertical cavity. J Fluid Mech 201:379–410

    Article  Google Scholar 

  2. Henkes R, Vlugt FVD, Hoogendoorn C (1991) Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models. Int J Heat Mass Transf 34(2):377–388

    Article  Google Scholar 

  3. Choi SK, Kim E, Kim S (2004) Computation of turbulent natural convection in a rectangular cavity with the \(k-\epsilon -\overline{\nu }^{2}-f\) model. Numer Heat Transf Part B 45:159–179

    Google Scholar 

  4. Kenjeres S, Gunarjo S, Hanjalic K (2005) Contribution to elliptic relaxation modelling of turbulent natural and mixed convection. Int J Heat Fluid Flow 26:569–586

    Article  Google Scholar 

  5. Cheesewright R, King KJ, Ziai S (1986) Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows, vol 60. ASME meeting, HTD, pp 75–86

  6. King KV (1989) Turbulent natural convection in rectangular air cavities. Ph.D. thesis, Queen Mary College, University of London, UK

  7. Betts PL, Bokhari IH (2000) Experiments on turbulent natural convection in an enclosed tall cavity. Int J Heat Fluid Flow 21:675–683

    Article  Google Scholar 

  8. Tian YS, Karayiannis TG (2000) Low turbulence natural convection in air filled square cavity. Int J Heat Mass Transf 43:849–866

    Article  MATH  Google Scholar 

  9. Henkes RAWM, Hoogendoorn CJ (1995) Comparison exercise for computations of turbulent natural convection in enclosures. Numer Heat Transf Part B 28(1):59–78

    Article  Google Scholar 

  10. Hsieh KJ, Lien F (2004) Numerical modeling of buoyancy-driven turbulent flows in enclosures. Int J Heat Fluid Flow 25:659–670

    Article  Google Scholar 

  11. Markatos N, Pericleous K (1984) Laminar and turbulent natural convection in an enclosed cavity. Int J Heat Mass Transf 27(5):755–772

    Article  MATH  Google Scholar 

  12. De Vahl Davis G (1983) Natural convection of air in a square cavity: A bench mark numerical solution. Int J Numer Meth Fluids 3(3):249–264

    Article  MATH  Google Scholar 

  13. Davidson L (1990) Calculation of the turbulent buoyancy-driven flow in a rectangular cavity using an efficient solver and two different low Reynolds number k-\(\epsilon\) turbulence models. Numer Heat Transf Part A 18:129–147

    Article  Google Scholar 

  14. Lam CKG, Bremhorst KA (1981) Modified form of the k-\(\epsilon\) model for predicting wall turbulence. Trans ASME J Fluids Eng 103:456–460

    Article  Google Scholar 

  15. Chien KY (1980) Predictions of channel and boundary layer flows with a low-Reynolds-number two-equation model of turbulence, AIAA-80-0134

  16. Jones WP, Launder BE (1972) The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transf 16:1119–1130

    Article  Google Scholar 

  17. Davidson L (1993) Computation of natural-convection flow in a square cavity. In: Henkes RAWM, Hoogendoorn CJ (ed) In turbulent natural convection in enclosures, proceedings of Eurotherm seminar \(N^{\circ }\) 22, Paris, Proc. Europeennes Termique et Industrie, pp 45–53

  18. Rodi W (1993) Turbulence models and their application in hydraulics, International Association of Hydraulics Research, Monograph, Delft

  19. Chen H, Patel V (1987) Practical near-wall turbulence models for complex flows including separation, no. AIAA-87-1300 in AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii

  20. Tieszen S, Ooi A, Durbin P, Behina M (1998) Modeling of natural convection heat transfer. In: Proceedings for the summer program, center for turbulence research pp 287–302

  21. Durbin PA (1995) Seperated flow computations with the \(k-\epsilon -\nu ^{2}\) model. Am Inst Aeronaut Astronaut J 33(2):659–664

    Article  Google Scholar 

  22. Daly BJ, Harlow FH (1970) Turbulent equations in turbulence. Phys Fluids 13(11):2634–2649

    Article  Google Scholar 

  23. Peng S, Davidson L (1999) Computation of turbulent buoyant flows in enclosures with low-Reynolds number \(k-\omega\) models. Int J Heat Fluid Flow 20:172–184

    Article  Google Scholar 

  24. Peng SH, Davidson L, Holmberg S (1997) A modified low-Reynolds-number \(k-\omega\) model for recirculating flows. Trans ASME J Fluid Eng 119:867–875

    Article  Google Scholar 

  25. Lien FS, Leschzinar MA (1999) Computational modeling of a transitional 3D turbine-cascade flow using a modified low-Re-\(k-\epsilon\) model and a multi-block scheme. Int J Comput Fluid Dyn 12:1–15

    Article  Google Scholar 

  26. Speziale CG (1987) On non-linear \(k-l\) and \(k-\epsilon\) models of turbulence. J Fluid Mech 178:459–475

    Article  MATH  Google Scholar 

  27. Lien FS, Kalitzin G (2001) Computations of transonic flow with the \(\overline{\nu }^{2}-f\) turbulence model. Int J Heat Fluid Flow 22:53–61

    Article  Google Scholar 

  28. Yang Z, Shih TH (1993) New time scale based \(k\)-\(\epsilon\) model for near-wall turbulence. Am Inst Aeronaut Astronaut J 31(7):1191–1198

    Article  MATH  Google Scholar 

  29. Wilcox DC (2006) Turbulence Modeling for CFD, 3rd edn. DCW Industries Inc., La Canada

    Google Scholar 

  30. Menter FR (2009) Review of the shear-stress transport turbulence model experience from an industrial perspective. Int J Comput Fluid Dyn 23(4):305–316

    Article  MATH  Google Scholar 

  31. Barhaghi DG, Davidson L (2007) Natural convection boundary layer in a 5:1 cavity. Phys Fluids 19:125106–15

    Article  MATH  Google Scholar 

  32. Lau G, Yeoh G, Timchenko V, Reizes J (2013) Large-eddy simulation of turbulent buoyancy-driven flow in a rectangular cavity. Int J Heat Fluid Flow 39:28–41

    Article  Google Scholar 

  33. Launder BE, Sharma BI (1974) Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1:131–138

    Article  Google Scholar 

  34. El-Gabry LA, Kaminski DA (2006) Numerical investigation of jet impingement with cross flow- comparison of Yang-Shih and standard \(\kappa\)-\(\epsilon\) turbulence models. Numer Heat Transf Part A 47:441–469

    Article  Google Scholar 

  35. Rathore SK, Das MK (2013) Comparison of two low-Reynolds number turbulence models for fluid flow study of wall bounded jets. Int J Heat Mass Transf 61:365–380

    Article  Google Scholar 

  36. Senthooran S, Parameswaran S (1999) Application of a new time scale based low \(k-\epsilon\) model to natural convection from a semi-infinite vertical isothermal plate. In: Technicla report, Amarillo National Resource Center for Plutonium, ANRCP-1999-3

  37. Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. Am Inst Aeronaut Astronaut J 26(11):1299–1310

    Article  MathSciNet  MATH  Google Scholar 

  38. Bardina JE, Huang PG, Coakley TJ (1997) Turbulence modeling validation, testing and development. In: Technical report, NASA Technical Memorandum 110446, Ames Research Center

  39. Hofmann HM, Kaiser R, Kind M, Martin H (2007) Calculations of steady and pulsating impinging jets-an assessment of 13 widely used turbulence models. Numer Heat Transf Part B Fundam 51(6):565–583

    Article  Google Scholar 

  40. Dutta R, Dewan A, Srinivasan B (2013) Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int J Heat Mass Transf 65:750–764

    Article  Google Scholar 

  41. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. Am Inst Aeronaut Astronaut J 32(8):1598–1605

    Article  Google Scholar 

  42. Biswas G, Eswaran V (2002) Turbulent flows: fundamentals, experiments and modeling, IIT Kanpur series of advanced texts. Narosa Publishing House, New Delhi

    Google Scholar 

  43. Menter FR (1992) Improved two-equation \(k-\omega\) turbulence models for aerodynamic flows. In: Technical report, NASA Technical Memorandum 103975, Ames Research Center (October 1992)

  44. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the sst turbulence model. In: Hanjalic K, Nagano Y, Tummers M (eds) Turbulence, heat and mass transfer, vol 4. Begell House, Inc., New York

    Google Scholar 

  45. Kundu P, Cohen I (2010) Fluid Mechanics, 4th edn. Academic Press, San Diego

    Google Scholar 

  46. Shuja SZ, Yilbas BS, Budair MO (1999) Gas jet impingement on a surface having a limited constant heat flux area: various turbulence models. Numer Heat Transf Part A 36(2):171–200

    Article  Google Scholar 

  47. Doormaal JPV, Raithby GD (1984) Enhancements of SIMPLE method for predicting incompressible fluid flows. Numer Heat Transf Part A 7:147–163

    MATH  Google Scholar 

  48. Patankar SV (1980) Numer Heat Transf Fluid Flow. Hemisphere, New York

    Google Scholar 

  49. Versteeg HK, Malalasekera W (1996) An Introduction to computational fluid dynamics. The finite method. Addison Wesley Longman Limited, England

    Google Scholar 

  50. Verman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids 16:3670–3681

    Article  MATH  Google Scholar 

  51. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids 4:633–635

    Article  Google Scholar 

  52. You D, Moin P (2008) A dynamic global-coefficient subgrid-scale model for compressible turbulence in complex geometries, Annual Research Briefs. Center for Turbulence Research. Standford University, Standford

    Google Scholar 

  53. Choi SK, Kim SO (2006) Computation of a turbulent natural convection in a rectangular cavity with the elliptic-blending second-moment closure. Int Commun Heat Mass Transf 33:1217–1224

    Article  Google Scholar 

  54. Thielen L, Hanjalic K, Jonker H, Manceau R (2005) Prediction of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure. Int J Heat Mass Transf 48:1583–1598

    Article  MATH  Google Scholar 

  55. Dol H, Hanjalic K (2001) Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number. Int J Heat Mass Transf 44:2323–2344

    Article  MATH  Google Scholar 

  56. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  57. Vollmers H (2001) Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas Sci Technol 12:1199–1207

    Article  Google Scholar 

  58. Wang XK, Tan SK (2007) Experimental investigation of the interaction between a plane wall jet and a parallel offset jet. Exp Fluids 42(4):551–562. doi:10.1007/s00348-007-0263-9

    Article  Google Scholar 

  59. Patel DK, Das MK, Roy S (2013) LES of incompressible turbulent flow inside a cubical cavity driven by two parallel lids moving in opposite direction. Int J Heat Mass Transf 67:1039–1053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manab Kumar Das.

Appendix

Appendix

Production by shear (\(G_{n}\)):

$$G_{n}=\nu _{t,n}\sqrt{\frac{\text {Pr}}{\text {Ra}}}\left[ \left( \frac{\partial U_{i}}{\partial X_{j}}+\frac{\partial U_{j}}{\partial X_{i}}\right) \right] \frac{\partial U_{i}}{\partial X_{j}}$$
(6.1)

Buoyancy production term:

$$G_{k}=g\beta \overline{v^{\prime }T^{\prime }}$$
(6.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, S.K., Das, M.K. Investigation on the relative performance of various low-Reynolds number turbulence models for buoyancy-driven flow in a tall cavity. Heat Mass Transfer 52, 437–457 (2016). https://doi.org/10.1007/s00231-015-1557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1557-8

Keywords

Navigation