Skip to main content
Log in

Fluidized bed drying characteristics and modeling of ginger (zingiber officinale) slices

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a, b, c:

Model constant

D:

Diffusion coefficient (m2/s)

DR:

Drying rate (kg/m2h)

k1, k2:

Drying constant

L:

Thickness of samples (m)

M:

Moisture content

m:

Mass (kg)

MR:

Moisture ratio (db%)

n:

Drying exponent

N:

Number of data points

RH:

Relative humidity (decimal)

R2:

Coefficient of determination

T:

Temperature (°C)

t:

Time (min)

V:

Velocity (m/s)

d:

Dry

db:

Dry basis

e:

Equilibrium

eff:

Effective

m:

Measured

o:

Initial

t:

Total

wb:

Wet basis

References

  1. Mujumdar AS (1995) Handbook of industrial drying. Marcel Dekker, New York

    Google Scholar 

  2. Devahastin S, Majumdar AS (1999) Batch drying of grains in a well-mixed dryer-effect of continuous and stepwise change in drying air temperature. Trans ASAE 42(2):421–425

    Article  Google Scholar 

  3. Pugsley T, Chaplin G, Khanna P (2007) Application of advanced measurement techniques to conical lab-scale fluidized bed dryers containing pharmaceutical granule. Food Bioprod Process 85(C3):273–283

    Article  MATH  Google Scholar 

  4. Vervloet D, Nijenhuis J, Van Ommen JR (2010) Monitoring a lab-scale fluidized bed dryer: a comparison between pressure transducers, passive acoustic emissions and vibration measurements. Powder Technol 197:36–348

    Article  Google Scholar 

  5. Wormsbecker M, Van Ommen R, Nijenhuis J, Tanfara H, Pugsley T (2009) The influence of vessel geometry on fluidized bed dryer hydrodynamics. Powder Technol 194:115–125

    Article  Google Scholar 

  6. Bizmark N, Mostoufi N, Sotudeh-Gharebagh R, Ehsani H (2010) Sequential modeling of fluidized bed paddy dryer. J Food Eng 101:303–308

    Article  Google Scholar 

  7. Izadifar M, Mowla D (2003) Simulation of a cross-flow continuous fluidized bed dryer for paddy rice. J Food Eng 58:325–329

    Article  Google Scholar 

  8. Assari MR, Basirat Tabrizi H, Saffar-Avval M (2007) Numerical simulation of fluid bed drying based on two-fluid model and experimental validation. Appl Therm Eng 27:422–429

    Article  Google Scholar 

  9. Fyhr C, Kemp IC (1999) Mathematical modeling of batch and continuous well-mixed fluidised bed dryers. Chem Eng Process 38:11–18

    Article  Google Scholar 

  10. Lai FS, Chen Y, Fan LT (1986) Modeling and simulation of a continuous fluidized-bed dryer. Chem Eng Sci 41(9):2419–2430

    Article  Google Scholar 

  11. Madhiyanon T, Techaprasan A, Soponronnarit S (2006) Mathematical models based on heat transfer and coupled heat and mass transfers for rapid high temperature treatment in fluidized bed: application for grain heat disinfestation. Int J Heat Mass Transf 49:2277–2290

    Article  Google Scholar 

  12. Palancz B (1983) A mathematical model for continuous fluidized bed drying. Chem Eng Sci 38(7):1045–1059

    Article  Google Scholar 

  13. Srinivasakannan C, Balsubramaniam N (2002) A simplified model for the drying of solids in batch fluidised beds. Braz J Chem Eng 19:293–298

    Article  Google Scholar 

  14. Zare D, Chen G (2009) Evaluation of a simulation model in predicting the drying parameters for deep-bed paddy drying. Comput Electron Agric 68:78–87

    Article  Google Scholar 

  15. Geng F, Xu D, Yuana Z, Yanb Y, Luob D, Wang H, Li B, Chyangc CS (2009) Numerical simulation on fluidization characteristics of tobacco particles in fluidized bed dryers. Chem Eng J 150:581–592

    Article  Google Scholar 

  16. Meziane S (2011) Drying kinetics of olive pomace in a fluidized bed dryer. Energy Convers Manag 52:1644–1649

    Article  Google Scholar 

  17. Białobrzewski I, Zielin´Ska M, Mujumdar AS, Markowski M (2008) Heat and mass transfer during drying of a bed of shrinking particles—simulation for carrot cubes dried in a spout-fluidized-bed drier. Int J Heat Mass Transf 51:4704–4716

    Article  MATH  Google Scholar 

  18. Zanoelo EF (2007) A theoretical and experimental study of simultaneous heat and mass transport resistances in a shallow fluidized bed dryer of mate leaves. Chem Eng Process 46:1365–1375

    Article  Google Scholar 

  19. Niamnuy C, Devahastin S (2007) Drying kinetics and quality of coconut dried in a fluidized bed dryer. Chem Eng Process 46:1365–1375

    Article  Google Scholar 

  20. Bayrock D, Ingledew WM (1997) Fluidized bed drying of baker’s yeast: moisture levels, drying rates, and viability changes during drying. Food Res Int 30(6):407–415

    Article  Google Scholar 

  21. Tasirin SM, Kamarudin SK, Jaafar K, Lee KF (2007) The drying kinetics of bird’s chillies in a fluidized bed dryer. J Food Eng 79:695–705

    Article  Google Scholar 

  22. Topuz A, Gur M, Gul MZ (2004) An experimental and numerical study of fluidized bed drying of hazelnuts. Appl Therm Eng 24:1535–1547

    Article  Google Scholar 

  23. Jangam SV, Thorat BN (2010) Optimization of spray drying of ginger extract. Drying Technol 28:1426–1434

    Article  Google Scholar 

  24. Balladin DA, Headley O, Chang-Yen I, Mcgaw DR (1998) High pressure liquid chromatographic analysis of the main pungent principles of solar dried west Indian ginger (Zingiber officinale Rosc.). Renew Energy 13(4):531–536

    Article  Google Scholar 

  25. Schweiggert U, Hofmann S, Reichel M, Schieber A, Carle R (2008) Enzyme-assisted liquefaction of ginger rhizomes (Zingiber officinale Rosc.) for the production of spray-dried and paste-like ginger condiments. J Food Eng 84:28–38

    Article  Google Scholar 

  26. Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Drying Technol 20:1503–1513

    Article  Google Scholar 

  27. Alakali J, Irtwange SV, Satimehin A (2009) Moisture adsorption characteristics of ginger slices. Cienc Tecnol Aliment 29(1):155–164

    Article  Google Scholar 

  28. Phoungchandang S, Nongsang S, Sanchai P (2009) The development of ginger drying using tray drying, heat pump–dehumidified drying, and mixed-mode solar drying. Dry Technol 27:1123–1131

    Article  Google Scholar 

  29. Phoungchandang S, Saentaweesuk S (2011) Effect of two stage, tray and heat pump assisted-dehumidified drying on drying characteristics and qualities of dried ginger. Food Bioprod Process 89(4):429–437

    Article  Google Scholar 

  30. Ganesapillai M, Miranda LR, Reddy T, Bruno M, Singh A (2011) Modeling, characterization, and evaluation of efficiency and drying indices for microwave drying of Zingiber officianale and Curcuma Mangga. Asia-Pac J Chem Eng 6:912–920

    Article  Google Scholar 

  31. Thorat ID, Mohapatra D, Sutar RF, Kapdi SS, Jagtap DD (2012) Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinale R.) slices. Food Bioprocess Technol 5:1379–1383

    Article  Google Scholar 

  32. Akpinar E, Midilli A, Bicer Y (2003) Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modelling. Energy Convers Manag 44:1689–1705

    Article  Google Scholar 

  33. Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  34. Senadeera W, Bhandari BR, Young G, Wijesinghe B (2007) Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J Food Eng 58:277–283

    Article  Google Scholar 

  35. Doymaz I (2006) Thin-layer drying behavior of mint leaves. J Food Eng 74:370–375

    Article  Google Scholar 

  36. Loha C, Das R, Choudhury B, Chatterjee PK (2012) Evaluation of air drying characteristics of sliced ginger (Zingiber officinale) in a forced convective cabinet dryer and thermal conductivity measurement. J Food Process Technol. 3(6):1000160

    Article  Google Scholar 

  37. Wang CY, Singh RP (1978) Use of variable equilibrium moisture content in modeling rice drying. Trans Am Soc Agric Eng 11:668–672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezaket Parlak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parlak, N. Fluidized bed drying characteristics and modeling of ginger (zingiber officinale) slices. Heat Mass Transfer 51, 1085–1095 (2015). https://doi.org/10.1007/s00231-014-1480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1480-4

Keywords

Navigation