Skip to main content
Log in

A new 1-D composite lumped model facilitates the algebraic calculation of local temperatures, mean temperatures, and total heat transfer in simple bodies

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Estimates of spatio-temporal temperatures and total heat transfer in simple bodies (large plate, long cylinder and sphere) have been done in the past with the help of charts and recently by way of algebraic correlation equations; both avenues are valid for large times mostly, i.e., dimensionless times or Fourier numbers τ ≥ 0.2. The imposing time restriction comes from the utilization of the truncated ‘one-term series’ because the Fourier infinite series diverge for very short times approaching zero. The central goal of this technical paper is to predict the mean, surface and center temperatures, as well as the total heat transfer in those simple bodies by implementing a 1-D composite lumped analysis united to a sound physics-based computational procedure. The effortless combined methodology is new. It brings forth a handful of compact algebraic equations covering the full gamma of Biot numbers (0 < Bi < 100) and all dimensionless times, 0 < τ < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Surface area

Bi :

Biot number, \( \frac{{\overline{{h_{f} }} R}}{{k_{s} }} \)

C :

Geometric parameter: 1 for large plate, 2 for long cylinder and 3 for sphere

c s :

Specific heat capacity of solid

\( \overline{{h_{f} }} \) :

Mean, external convective coefficient

\( \overline{{h_{s} }} \) :

Mean, internal convective coefficient

k f :

Thermal conductivity of fluid

k s :

Thermal conductivity of solid

m :

Mass of solid

\( \overline{{Nu_{s} }} \) :

Mean, internal Nusselt number, \( \frac{{\overline{{h_{s} }} (2R) }}{{k_{s} }} \)

\( \overline{{Nu_{f} }} \) :

Mean, external Nusselt number, \( \frac{{\overline{{h_{f} }} (2R)}}{{k_{f} }} \)

\( \overline{{Nu_{ov} }} \) :

Mean, overall Nusselt number, \( \frac{{\overline{U} (2R)}}{{k_{s} }} \)

Q i :

Initial internal energy

Q t :

Total heat transfer

r :

Transverse coordinate

R :

Characteristic length: semi-thickness of large plate, radius of long cylinder, radius of sphere

t :

Time

t fi :

Final time

T :

Local temperature

T c :

Center temperature

T f :

Fluid temperature

T m :

Mean temperature

T w :

Surface temperature

\( \overline{U} \) :

Mean, overall heat transfer coefficient

V :

Volume

α(τ), β(τ), γ(τ) :

Time-dependent coefficients in Eq. (11)

α s :

Thermal diffusivity of solid

η :

Dimensionless r

θ :

Dimensionless T for convective surface

θ* :

Dimensionless T for isothermal surface

ρ s :

Density of solid

τ:

Dimensionless t or Fourier number

Ω t :

Dimensionless Q t

i :

Initial

f :

Fluid

fi :

Final

ov :

Overall

s :

Solid

w :

Surface

References

  1. Grigull U, Bach J, Sandner H (1966) Näherungslösungen der nichtstanionaren Wärmeleitung Forsch Ing–Wes 32: 11–18

  2. Gurney HP, Lurie J (1923) Charts for estimating temperature distributions in heating and cooling of solid shapes. Ind Eng Chem 15:1170–1172

    Article  Google Scholar 

  3. Gröber H (1925) Zeitschrift des Vereins deutscher Ingenieure 69:705–715

    Google Scholar 

  4. Boelter LMK, Cherry VH, Johnson HA, Martinelli RC (1946) Heat transfer notes. University of California Publications, Berkeley, CA. Also McGraw–Hill, New York, NY, (1965)

  5. Heisler MP (1947) Temperature charts for induction and constant temperature heating. Trans ASME 69:227–236

    Google Scholar 

  6. Gröber H, Erk S, Grigull U (1961) Fundamentals of heat transfer. McGraw–Hill, New York, NY

  7. Liukov AV (1968) Analytical heat diffusion theory. Academic Press, New York, NY

    Google Scholar 

  8. Yovanovich MM (1996) Simple explicit expressions for calculation of the Heisler–Gröber charts. AIAA Paper 96–3968, National Heat Transfer Conference, Houston, TX

  9. Campo A (1997) Rapid determination of spatio–temporal temperatures and heat transfer rates in simple bodies cooled by convection: usage of calculators in lieu of the Heisler/Gröber charts. Intern Comm Heat Mass Transf 24:553–564

    Article  Google Scholar 

  10. Ostrogorsky AG (2009) Simple explicit equations for transient heat conduction in finite solids. ASME J Heat Transf 131, Article number 011303–1

    Google Scholar 

  11. Tzou DY (1995) A unified approach for heat conduction from macro to micro-scales. ASME J Heat Transf 117:8–16

    Article  Google Scholar 

  12. Patankar SV (1991) Computation of conduction and duct flow heat transfer. Innovative Research Inc., Minneapolis, MN

    Google Scholar 

  13. Arpaci V (1966) Conduction heat transfer. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  14. Cortés C, Campo A, Arauzo I (2003) Reflections on the lumped model of unsteady heat conduction in simple bodies. Intern J Thermal Sci 42:921–930

    Article  Google Scholar 

  15. Holman JP (2010) Heat transfer, 10th edition, p 295, McGraw-Hill, New York, NY

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Campo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, A. A new 1-D composite lumped model facilitates the algebraic calculation of local temperatures, mean temperatures, and total heat transfer in simple bodies. Heat Mass Transfer 48, 1495–1504 (2012). https://doi.org/10.1007/s00231-012-0994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-0994-x

Keywords

Navigation