Skip to main content
Log in

Numerical study of heat and mass transfer of ammonia-water in falling film evaporator

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

To investigate the performance of the heat and mass transfer of ammonia water during the process of falling film evaporation in vertical tube evaporator, a mathematical model of evaporation process was developed and solved based on stream function. Then an experimental study of falling film evaporation was carried out in order to validate the mathematical model. A series of parameters, such as velocity, film thickness and concentration, etc., were obtained from the mathematical model. The calculated results show that the average velocity and the film thickness change sharp at the entrance region when x < 100 mm, while they vary slightly in the fully developed region when x > 100 mm. The film thickness depends largely on the flow rate of solution. It is observed that the heating power and mass flow of solution significantly affect the concentration difference between the inlet and outlet of evaporation tube. The calculated results reveal that the tube length has a significant impact on the amounts of ammonia vapor evaporated. It is suggested that the roll-worked enhanced tube should be used in order to decrease the concentration gradient in the film thickness direction and enhance the heat and mass transfer rate. Furthermore, the experimental and calculated results indicate that the inlet solution concentration has a great influence on the heat exchange capacity, the amounts of ammonia vapor evaporated and the evaporation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

C P :

Specific heat, J kg−1K−1

D :

Tube diameter, m

D m :

Diffusion coefficient, m2/s

H :

Specific enthalpy, J/kg

L :

Tube length, m

m :

Solution mass flow, kg/h

mE :

The amount of evaporated ammonia vapor, kg/h

\( \dot{m} \) :

Evaporation rate, kg/s/m2

N :

Sequence number of experiment

P :

Evaporating pressure, kPa

PE :

Percent of evaporated ammonia vapor, %

Q :

Heat exchange capacity between hot water and solution, kW

T :

Temperature, °C

u :

Film velocity of x direction, m/s

v :

Film velocity of y direction, m/s

V :

Volumetric flow of water, L/h

ΔH :

Enthalpy difference, J/kg

ξ:

Mass concentration of solution, kg/kg

δ:

Film thickness, m

Г:

Spray density, kg m−1 s−1

µ:

Dynamic viscosity, N s/m2

ρ:

Density, kg/m3

λ:

Thermal conductivity, W m−1K−1

cal:

Calculated

exp:

Experimental

in:

Inlet

out:

Outlet

hw:

Hot water

s:

Solution

W:

The wall of evaporation tube

References

  1. Zhang F, Tang DL, Geng J et al (2008) Study on the temperature distribution of heated falling liquid films. Nonlinear Phenom 237:867–872. doi:10.1016/j.physd.2007.10.018

    Article  MATH  Google Scholar 

  2. Brotherton F (2002) Alcohol recovery in falling film evaporators. Appl Therm Eng 22:855–860. doi:10.1016/S1359-4311(01)00125-9

    Article  Google Scholar 

  3. Fujita I, Hihara E (2005) Heat and mass transfer coefficients of falling-film absorption process. Int J Heat Mass Transf 48:2779–2786. doi:10.1016/j.ijheatmasstransfer.2004.11.028

    Article  MATH  Google Scholar 

  4. Medrano M, Bourouis M, Coronas A (2002) Absorption of water vapour in the falling film of water–lithium bromide inside a vertical tube at air-cooling thermal conditions. Int J Therm Sci 41:891–898. doi:10.1016/S1290-0729(02)01383-2

    Article  Google Scholar 

  5. Jabrallah SB, Belghith A, Corriou JP (2006) Convective heat and mass transfer with evaporation of a falling film in a cavity. Int J Therm Sci 45:16–28. doi:10.1016/j.ijthermalsci.2005.05.001

    Article  Google Scholar 

  6. Medrano M, Bourouis M, Perez-Blanco H, Coronas A (2003) A simple model for falling film absorption on vertical tubes in the presence of non-absorbables. Int J Refrig 26:108–116. doi:10.1016/S0140-7007(02)00015-4

    Article  Google Scholar 

  7. Yang L, Shen S (2008) Experimental study of falling film evaporation heat transfer outside horizontal tubes. Desalination 220:654–660. doi:10.1016/j.desal.2007.02.046

    Article  Google Scholar 

  8. Zhang L, Zheng H, Wu Y (2003) Experimental study on a horizontal tube falling film evaporation and closed circulation solar desalination system. Renew Energy 28:1187–1199. doi:10.1016/S0960-1481(02)00213-6

    Article  Google Scholar 

  9. Liu ZH, Yi J (2002) Falling film evaporation heat transfer of water/salt mixtures from roll-worked enhanced tubes and tube bundle. Appl Therm Eng 22:83–95. doi:10.1016/S1359-4311(01)00061-8

    Article  Google Scholar 

  10. Johansson M, Vamling L, Olausson L (2009) Heat transfer in evaporating black liquor falling film. Int J Heat Mass Transf 52:2759–2768. doi:10.1016/j.ijheatmasstransfer.2008.09.040

    Article  Google Scholar 

  11. Souza TR, Salvagnini WM, Camacho JLP, Taqueda MES (2008) Performance of a solar energy powered falling film evaporator with film promoter. Energy Convers Manag 49:3550–3559. doi:10.1016/j.enconman.2008.08.001

    Article  Google Scholar 

  12. Shi C, Chen Q, Jen TC, Yang W (2010) Heat transfer performance of lithium bromide solution in falling film generator. Int J Heat Mass Transf 53:3372–3376. doi:10.1016/j.ijheatmasstransfer.2010.02.051

    Article  Google Scholar 

  13. Islam RM, Wijeysundera NE, Ho JC (2003) Evaluation of heat and mass transfer coefficients for falling-films on tubular absorbers. Int J Refrig 26:197–204. doi:10.1016/S0140-7007(02)00076-2

    Article  Google Scholar 

  14. Xu ZF, Khoo BC, Wijeysundera NE (2008) Mass transfer across the falling film: simulations and experiments. Chem Eng Sc 63:2559–2575. doi:10.1016/j.ces.2008.02.014

    Article  Google Scholar 

  15. Kim DS, Infante Ferreira CA (2009) Analytic modelling of a falling film absorber and experimental determination of transfer coefficients. Int J Heat Mass Transf 52:4757–4765. doi:10.1016/j.ijheatmasstransfer.2009.05.014

    Article  MATH  Google Scholar 

  16. Feddaoui M, Belahmidi EM, Mir A, Bendou A (2001) Numerical study of the evaporative cooling of liquid film in laminar mixed convection tube flows. Int J Therm Sci 40:1011–1020. doi:10.1016/S1290-0729(01)01286-8

    Article  Google Scholar 

  17. Gommed K, Grossman G, Koenig MS (2001) Numerical study of absorption in a laminar falling film of ammonia-water. ASHRAE Trans 107:453–462

    Google Scholar 

  18. Niu X, Du K, Du S (2007) Numerical analysis of falling film absorption with ammonia–water in magnetic field. Appl Therm Eng 27:2059–2065. doi:10.1016/j.applthermaleng.2006.12.001

    Article  Google Scholar 

  19. Du XZ, Wang BX, Wu SR, Jiang SY (2002) Energy analysis of evaporating thin falling film instability in vertical tube. Int J Heat Mass Transf 45:1889–1893. doi:10.1016/S0017-9310(01)00288-5

    Article  MATH  Google Scholar 

  20. Assad EHM, Lampinen MJ (2002) Mathematical modeling of falling liquid film evaporation process. Int J Refrig 25:985–991. doi:10.1016/S0140-7007(01)00064-0

    Article  Google Scholar 

  21. Feddaoui M, Meftah H, Mir A (2006) The numerical computation of the evaporative cooling of falling water film in turbulent mixed convection inside a vertical tube. Int Commun Heat Mass Transf 33:917–927. doi:10.1016/j.icheatmasstransfer.2006.04.004

    Article  Google Scholar 

  22. Sirko O (2009) Integration of Kalina cycle in a combined heat and power plant, a case study. Appl Therm Eng 29:2843–2848. doi:10.1016/j.applthermaleng.2009.02.006

    Article  Google Scholar 

  23. Kang YT, Akisawa A, Kashiwagi T (2000) Analytical investigation of two different absorption modes: falling film and bubble types. Int J Refrig 23:430–443. doi:10.1016/S0140-7007(99)00075-4

    Article  Google Scholar 

  24. Kwon K, Jeong S (2004) Effect of vapor flow on the falling-film heat and mass transfer of the ammonia/water absorber. Int J Refrig 27:955–964. doi:10.1016/j.ijrefrig.2004.06.009

    Article  Google Scholar 

  25. Castro J, Oliet C, Rodriguea I, Oliva A (2009) Comparison of the performance of falling film and bubble absorbers for air-cooled absorption systems. Int J Therm Sci 48:1355–1366. doi:10.1016/j.ijthermalsci.2008.11.021

    Article  Google Scholar 

  26. Du Sh X (2006) Pilot study of the model and experiment of magnetic field promoting the absorption of ammonia. Dissertation, Southeast University

  27. Li RX (2008) Basis of finite volume method, 2nd edn. National defense industry press, Beijing

    Google Scholar 

  28. Tao WQ (2001) Numerical heat transfer, 2nd edn. Xi’an Jiao tong university press, Xi’an

    Google Scholar 

  29. Li J, Peterson GP, Cheng P (2004) Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf 47:4215–4231. doi:10.1016/j.ijheatmasstransfer.2004.04.018

    Article  MATH  Google Scholar 

  30. Niu XF, Du K, Xiao F (2010) Experimental study on ammonia-water falling film absorption in external magnetic fields. Int J Refrig 33:686–694. doi:10.1016/j.ijrefrig.2009.11.014

    Article  Google Scholar 

  31. Mao WP (1997) Research and analysis of falling film absorption outside vertical tubes. Dissertation, Shanghai Jiao Tong University

Download references

Acknowledgments

The authors are thankful for the financial support by the High Technology Research and Development (863) Program of China under Grant No: 2007AA05Z442 and 2009AA05Z433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbiao Bu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, X., Ma, W. & Huang, Y. Numerical study of heat and mass transfer of ammonia-water in falling film evaporator. Heat Mass Transfer 48, 725–734 (2012). https://doi.org/10.1007/s00231-011-0923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0923-4

Keywords