Skip to main content

Advertisement

Log in

Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Thermal storage systems are central elements of various types of power plants operated using renewable and conventional energy sources. Where gaseous heat transfer media are used, a regenerator-type heat storage with a packed bed inventory is a particularly cost-effective solution. However, suitable design tools to analyse the thermo-mechanical aspects of large-scale storage of high temperature heat are currently still missing. As a basis for such a tool, this contribution presents a novel approach for the prediction of the thermo-mechanical behaviour of such storage under thermo-cyclic operation. The relevant relations are formulated on the basis of the discrete element method (DEM). Here, the forces interacting between spherical particles are calculated by spring, dashpot and friction models and the resulting translations and rotations are determined solving Newton’s equations of motion. Coupling these equations with a simplified thermal model that considers the heat resistance within the particles allows for investigation of the thermo-mechanical behaviours of a packed bed. For adequate implementation of this new approach and for reduced computational effort, a time-step control has been implemented and validated. Initial simulation results include the temporal and spatial displacements as well as the forces acting on the individual bodies for a thermo-cyclic operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c :

Specific heat capacities (J/kg K)

C :

Damping coefficient (kg/s)

e :

Coefficient of restitution

F :

Contact force (N)

g :

Gravitational acceleration (m/s2)

h :

Heat transfer coefficient (W/m2 K)

J :

Moment of inertia (kg m2)

k :

Regenerator heat transfer coefficient (W/m2 K)

K :

Spring constant (N/m)

m :

Mass (kg)

\( \dot{m} \) :

Mass flow rate (kg/s)

\( \vec{n} \) :

Normal directed vector

O :

Total heat transfer surface (m2)

r :

Particle radius (m)

t :

Time (s)

\( \vec{t} \) :

Tangential directed vector

Δt :

Time-step size (s)

T :

Temperature (K)

ν:

Relative velocity (m/s)

V :

Volume (m3)

x :

Particle coordinates (m)

α:

Linear expansion coefficient (K−1)

γ:

Damping parameter

δ:

Penetration depth (m)

ζ:

Normalisation of time

η:

Normalisation of space

λ:

Thermal conductivity (W/m K)

Λ:

Reduced regenerator length

μ:

Coulomb friction coefficient

Π:

Reduced period duration

ρ:

Density (kg/m3)

σ:

Mean stress tensor (Pa)

τ:

Charge/discharge duration (s)

Φ:

Equilibrium criterion (m)

ψ:

Hausen parameter

\( \vec{\omega } \) :

Rotational speed (s−1)

f :

Fluid medium

i :

Particle i

j :

Particle j

n :

Normal direction

s :

Solid medium

t :

Tangential direction

References

  1. Ulf H, Bruce K, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants, Ulf Herrmann, Bruce Kelly, Henry Price, Energy 29:883–893

    Google Scholar 

  2. Tamme R, Laing D, Steinmann WD (2004) Advanced thermal storage technology for parabolic trough. J Sol Energy Eng vol 126, pp 794–800

    Google Scholar 

  3. Steinmann WD, Tamme R (2006) Latent Heat Storage for Solar Steam Systems. Proc. 13th Solar-PACES International Symposium on Concentrated Solar Power and Chemical Energy Technology, June 20–23. Sevilla, Spain

    Google Scholar 

  4. Turner RH (1978) High temperature thermal energy storage. Franklin, Philadelphia

  5. Winter C.-J., Sizmann RL, Vant-Hull LL (1991) Solar power plants. Fundamentals, technology, systems, economics. Springer, Berlin

  6. Hausen H (1950) Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer, Heidelberg, Berlin

    Google Scholar 

  7. Heiligenstaedt, W (1966) Wärmetechnische Rechnungen für Industrieöfen. 4. Aufl. Düsseldorf: Verl. Stahleisen

  8. Gan Y, Kamlah M (2006) Identification of material parameters of a thermo-mechanical model for pebble beds in fusion blankets. Forschungszentrum Karlsruhe, Postfach, Karlsruhe, Germany

  9. Dell’Orco G, Di Maio PA, Giammusso R, Tincani A, Vella G (2007) A constitutive model for the thermo-mechanical behaviour of fusion-relevant pebble beds and its application to the simulation of HELICA mock-up experimental results. EFDA CSU, Boltzmannstr. 2, 85748 Garching bei Munchen, Germany

  10. An Z, Ying A, Abdou M (2005) Experimental and numerical study of ceramic breeder pebble bed thermal deformation behavior. Fusion Sci Tech 47(4):1101–1105

    Google Scholar 

  11. Aquaro D, Zaccari N (2005) Pebble bed thermal–mechanical theoretical model application at the geometry of test blanket module of ITER-FEAT nuclear fusion reactor

  12. Ying A, Huang H, Abdou MA, Zi L (2001) Effects of thermal expansion mismatch on solid breeder blanket pebble bed and structural clad thermomechanics interactions. Fusion technology ISSN 0748-1896 CODEN FUSTE8

  13. Lu Z, Ying AY, Abdou MA (2001) Numerical and experimental prediction of the thermomechanical performance of pebble beds for solid breeder blanket, UCLA, Los Angeles, CA 90095-1597, USA

  14. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65

    Google Scholar 

  15. Masson S, Martinez J (2000) Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol 109:164–178

    Article  Google Scholar 

  16. Ting JM, Khwaja M, Meachum AR, Rowell JD (1993) An ellipse-based discrete element model for granular materials. Int J Numer Anal Methods Geomech, vol 17, pp 603–623

  17. Pöschel T (1995) Molecular dynamics of arbitrarily shaped granular particles. J Phys I France, vol 5, pp 1431–1455

  18. Schmidt FW, Willmott AJ (1981) Thermal energy storage and regeneration. McGraw-Hill Book Company

  19. Gnielinski V (1982) vt “Verfahrenstechnik” 16, Nr.1, S.36/39

  20. Lätzel M (2003) From microscopic simulations towards a macroscopic description of granular media. Diss., Universität Stuttgart, Stuttgart

    Google Scholar 

  21. D’Addetta GA (2004) Discrete models for cohesive frictional materials. Universität Stuttgart, Stuttgart

    Google Scholar 

  22. Lungfiel A (2002) Ermittlung von Belastungsgrößen mittels der Diskrete-Elemente-Methode für die Auslegung von Sturzmühlen. Diss, Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg

    Google Scholar 

  23. Matuttis HG, Luding S, Herrmann HJ (2000) Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol 109(2000):278–292

    Article  Google Scholar 

  24. Shampine, LF, Reichelt MW (1997) The MATLAB ODE Suite. SIAM J Sci Comput. vol 18, pp 1–22

  25. Asmar BN, Langston PA, Matchett AJ, Walters JK (2002) Validation tests on a distinct element model of vibrating cohesive particle systems. Comput Chem Eng 26(2002):785–802

    Article  Google Scholar 

  26. Gekoppelte (2006) CFD/DEM-Simulation blasenbildender Wirbelschichten, Götz, Sören Diss. Universität Dortmund, Shaker Verlag, Aachen

  27. Mioa H, Akashi M, Shimosaka A, Shirakawa Y, Hidaka J, Matsuzaki S (2009) Speed-up of computing time for numerical analysis of particle charging process by using discrete element method. Chem Eng Sci 64:1019–1026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Dreißigacker.

Additional information

Dedicated to Professor Dr.-Ing. Dr.h.c. mult. Karl Stephan on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreißigacker, V., Müller-Steinhagen, H. & Zunft, S. Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat Mass Transfer 46, 1199–1207 (2010). https://doi.org/10.1007/s00231-010-0684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0684-5

Keywords

Navigation