Skip to main content
Log in

Convective heat transfer over two blocks arbitrary located in a 2D plane channel using a hybrid lattice Boltzmann-finite difference method

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present paper deals with the numerical investigation of a 2D laminar fluid flow and heat transfer in a plane channel with two square blocks located at arbitrary positions. The numerical model is based on a coupling between the multiple relaxation time-lattice Boltzmann equation and the finite difference method for incompressible flow. Both the horizontal and the vertical separation distances between the two blocks are varied. Particular attention was paid to the distribution patterns of the time averaged local Nusselt number on the top and bottom walls. Results obtained from the present study show a complex flow patterns developed in the channel due to the change of the square blocks positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

g :

Gravitational acceleration (m s−1)

d :

Blocks height (m)

d h :

Block separation distance in X direction (m)

d V :

Block separation distance in Y direction ( m)

H :

Channel height (m)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of the channel (m)

<Nu> :

Time averaged local Nusselt number

Pr :

Prandtl number (v/α)

Re :

Channel Reynolds number (ρU max H/μ)

T :

Temperature (K)

u, v :

Velocity components (m s−1)

U max :

Maximum velocity at the channel inlet (m s−1)

x, y :

Cartesian coordinates

X, Y :

Dimensionless coordinates (X = x/H, Y = y/H)

α :

Thermal diffusivity (m2 s−1)

β:

Blockage ratio (d/H)

θ :

Dimensionless temperature (T − T c)/(T h− T c)

ρ :

Density of fluid (kg m−3)

μ :

Dynamic viscosity of fluid (kg m−1 s−1)

v :

Kinematic viscosity (m2 s−1)

τ :

Time nondimensionalized by U max/H

c:

Cold

f:

Fluid

h:

Hot

s:

Inner solid

References

  1. Hayashi M, Sakurai A (1986) Wake interference of a row of normal flat plates arranged side by side in a uniform flow. J Fluid Mech 164:1–25

    Article  Google Scholar 

  2. Nakagawa S, Senda M, Hiraide A, Kikkawa S (1999) S Heat transfer characteristics in a channel flow with a rectangular cylinder. JSME Int J Ser B 42:188–196

    Google Scholar 

  3. Bosch G (1995) Experimentelle and theoretische Untersuchung der instationaren Stromung um zylindrische Strukturen. Ph. D. Dissertation, Universität Fridericiana zu Karlsruhe, Germany

  4. Valencia A (1999) Heat transfer enhancement due to self-sustained oscillating transverse vortices in channels with periodically mounted rectangular bars. Int J Heat Mass Transf 42:2053–2062

    Article  MATH  Google Scholar 

  5. Agrawal A, Djenidi L, Antonia RA (2006) Investigation of the flow around a pair of side-by-side square cylinders using the lattice Boltzmann method. Comput Fluids 35:1093–1107

    Article  Google Scholar 

  6. Xu Y, Liu Y, Xia Y, Wu F (2008) Lattice-Boltzmann simulation of two-dimensional flow over two vibrating side-by-side circular cylinders. Phys Rev E 78:046314

    Article  Google Scholar 

  7. Tatsutani RK, Devarakonda R, Humphrey JAC (1993) Unsteady flow and heat transfer for cylinder pairs in a channel. Int J Heat Mass Transf 36:3311–3328

    Article  Google Scholar 

  8. Rosales JL, Ortega A, Humphrey JAC (2001) A numerical simulation of the convective heat transfer in confined channel flow past square cylinders: comparison of inline and offset tandem pairs. Int J Heat Mass Transf 44:587–603

    Article  MATH  Google Scholar 

  9. Bhattacharyya S, Dhinakran S (2008) Vortex shedding in shear flow past tandem square cylinders in the vicinity of a plane wall. J Fluids Struct 24(3):400–417

    Article  Google Scholar 

  10. Lallemand P, Luo LS (2003) Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimension. Phys Rev E 68(3):036706

    Article  MathSciNet  Google Scholar 

  11. Lallemand P, Luo L-S (2003) Hybrid finite-difference thermal lattice Boltzmann equation. Int J Modern Phys B 17(1/2):41–47

    Google Scholar 

  12. Mezrhab A, Bouzidi M, Lallemand P (2004) Hybrid lattice Boltzmann finite-difference simulation of convective flows. Comput Fluids 33:623–641

    Article  MATH  Google Scholar 

  13. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Series Numerical Mathematics and Scientific Computation. Oxford, New York

    MATH  Google Scholar 

  14. Ginzburg I, Verhaeghe F, d’Humières D (2008) Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun Comput Phys 3(2):427–478

    MathSciNet  Google Scholar 

  15. Ginzburg I, Verhaeghe F, d’Humières D (2008) Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme. Commun Comput Phys 3(3):519–581

    MathSciNet  Google Scholar 

  16. Inamuro T, Ogata T, Tajima S, Konishi N (2004) A lattice Boltzmann method for incompressible two-phase flows with large density differences. J Comput Phys 198:628–644

    Article  MATH  Google Scholar 

  17. Semma E, El Ganaoui M, Bennacer R, Mohamad AA (2008) Investigation of flows in solidification by using the lattice Boltzmann method. Int J Therm Sci 47(3):201–208

    Article  Google Scholar 

  18. Mondal B, Mishra SC (2007) Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems. Numer Heat Transf Part A Appl 52(8):757–775

    Article  Google Scholar 

  19. Sukop M, Huang HB, Lin CL, Deo MD, Oh K, Miller JD (2008) Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phys Rev E 77:026710

    Article  Google Scholar 

  20. Marié S, Ricot D, Sagaut P (2009) Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics. J Comput Phys 228(4):1056–1070

    Article  MATH  MathSciNet  Google Scholar 

  21. Mohamad AA, El-Ganaoui M, Bennacer R (2009) Lattice Boltzmann simulation of natural convection in an open ended cavity. Int J Therm Sci, Corrected Proof, available online 14 March 2009 (in press)

  22. Niavarani-Kheiri A, Darbandi M, Schneider GE (2004) Parallelization of the lattice Boltzmann model in simulating buoyancy-driven convection heat transfer. ASME Int Mech Eng Congress and Exposition, IMECE 61871:305–312

    Google Scholar 

  23. Leemput PV, Vandekerckhove C, Vanroose W, Roose D (2007) Accuracy of hybrid lattice Boltzmann/finite difference schemes for reaction–diffusion systems. Multiscale Model Simul 6(3):838–857

    Article  MATH  MathSciNet  Google Scholar 

  24. Treeck CV, Rank E, Krafczyk M, Tolke J, Nachtwey B (2006) Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows. Comput Fluids 35:863–871

    Article  Google Scholar 

  25. Guo Z, Liu H, Luo LS, Xu K (2008) A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows. J Comput Phys 227:4955–4976

    Article  MATH  MathSciNet  Google Scholar 

  26. Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of Boltzmann-lattice fluid with boundaries. Phys Fluids 13:3452–3459

    Article  Google Scholar 

  27. Jami M, Mezrhab A, Bouzidi M, Lallemand P (2006) Lattice-Boltzmann computation of natural convection in a partitioned enclosure with inclined partitions attached to its hot wall. Phys A 368(2):481–494

    Article  Google Scholar 

  28. Mezrhab A, Moussaoui MA, Naji H (2008) Lattice Boltzmann simulation of surface radiation and natural convection in a square cavity with an inner cylinder. J Phys D Appl Phys 41:551–5517

    Google Scholar 

  29. Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  30. Succi S, Karlin I, Chen H (2002) Role of the H theorem in lattice Boltzmann hydrodynamic simulations. Rev Mod Phys 74(4):1203–1220

    Article  Google Scholar 

  31. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  32. d’Humières D (1992) Generalized lattice Boltzmann equations. In: Shizgal BD, Weaver DP (eds) Rarefied gas dynamics: theory and simulations. Prog Aeronaut Astronaut 159:450–58

  33. Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance and stability. Phys Rev E 61:6546–6562

    Article  MathSciNet  Google Scholar 

  34. Turki S, Abbassi H, Nasrallah SB (2003) Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated square cylinder. Int J Therm Sci 42(12):1105–1113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mezrhab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussaoui, M.A., Jami, M., Mezrhab, A. et al. Convective heat transfer over two blocks arbitrary located in a 2D plane channel using a hybrid lattice Boltzmann-finite difference method. Heat Mass Transfer 45, 1373–1381 (2009). https://doi.org/10.1007/s00231-009-0514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0514-9

Keywords

Navigation