Skip to main content
Log in

Deformations of Koszul Artin–Schelter Gorenstein algebras

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We compute the Nakayama automorphism of a Poincaré–Birkhoff–Witt (PBW)-deformation of a Koszul Artin–Schelter (AS) Gorenstein algebra of finite global dimension, and give a criterion for an augmented PBW-deformation of a Koszul Calabi–Yau algebra to be Calabi–Yau. The relations between the Calabi–Yau property of augmented PBW-deformations and that of non-augmented cases are discussed. The Nakayama automorphisms of PBW-deformations of Koszul AS–Gorenstein algebras of global dimensions 2 and 3 are given explicitly. We show that if a PBW-deformation of a graded Calabi–Yau algebra is still Calabi–Yau, then it is defined by a potential under some mild conditions. Some classical results are also recovered. Our main method used in this article is elementary and based on linear algebra. The results obtained in this article will be applied in a subsequent paper (He et al., Skew polynomial algebras with coefficients in AS regular algebras, preprint, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Artin M., Schelter W.F.: Graded algebras of global dimension 3. Adv. Math. 66, 171–216 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beilinson A.A., Ginzburg V., Soergel W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger R.: Koszulity for nonquadratic algebras. J. Algebra 239, 705–734 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger R.: Gerasimov’s theorem and N-Koszul algebras. J. Lond. Math. Soc. 79, 631–648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger R., Ginzburg V.: Higher symplectic reflection algebras and non-homogeneous N-Koszul property. J. Algebra 304, 577–601 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger R., Marconnet N.: Koszul and Gorenstein properties for homogeneous algebras.. Algebras Represent. Theory 9, 67–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger R., Taillefer R.: Poincaré–Birkhoff–Witt deformations of Calabi–Yau algebras. J. Noncommut. Geom. 1, 241–270 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bocklandt R.: Graded Calabi–Yau algebras of dimension 3. J. Pure Appl. Algebra 212, 14–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braverman A., Gaitsgory D.: Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type. J. Algebra 181, 315–328 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois-Violette M.: Graded algebras and multilinear forms. C. R. Acad. Sci. Paris Ser. I 341, 719–725 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dubois-Violette M.: Multilinear forms and graded algebras. J. Algebra 317, 198–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fløystad G., Vatne J.E.: PBW-deformations of N-Koszul algebras. J. Algebra 302, 116–155 (2006)

    Article  MathSciNet  Google Scholar 

  13. Ginzburg, V.: Calabi–Yau algebras, arXiv:math/0612139

  14. Green E.L., Marcos E.N., Martínez-Villa R., Zhang P.: D-Koszul algebras. J. Pure Appl. Algebra 193, 141–162 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. He J.-W., Van Oystaeyen F., Zhang Y.: Cocommutative Calabi–Yau Hopf algebras and deformations. J. Algebra 324, 1921–1939 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, J.-W., Van Oystaeyen, F., Zhang, Y.: Skew polynomial algebras with coefficients in Artin–Schelter regular algebras, preprint (2011)

  17. Lu D.-M., Palmieri J.H., Wu Q.-S., Zhang J.J.: A -algebras for ring theorists. Algebra Colloq. 11, 91–128 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Polishchuk, A., Positselski, C.: Quadratic Algebras. In: University Lecture Series 37. American Mathematical Society, Providence (2005)

  19. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule–contramodule correspondence. Mem. Am. Math. Soc. 212 (2011)

  20. Priddy S.: Koszul resolutions. Trans. Am. Math. Soc 152, 39–60 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, S.P.: Some graded algebras related to elliptic curves. In: CMS Conference Proceedings, vol. 19, pp. 315–348. American Mathematical Society, Providence (1996)

  22. Van den Bergh M.: Existence theorems for dualizing complexes over non-commutative graded and filtered rings. J. Algebra 195, 662–679 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van den Bergh, M.: A relation between Hochschild homology and cohomology for Gorenstein rings. In: Proceedings of the American Mathematical Society, vol. 126, pp. 1345–1348. American Mathematical Society, Providence (1998). Erratum: In: Proceedings of the American Mathematical Society, vol. 130, pp. 2809–2810. American Mathematical Society, Providence (2002)

  24. Van den Bergh, M.: Calabi–Yau algebras and superpotentials, arXiv:1008.0599

  25. Wu, Q.-S., Zhu, C.: Poincaré–Birkhoff–Witt deformations of Koszul Calabi–Yau algebras. Algebra Represent. Theory (2011). doi:10.1007/s10468-011-9312-4

  26. Yekutieli A.: The rigid dualizing complex of a universal enveloping algebra. J. Pure Appl. Algebra 150, 85–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang J.J.: Non-Noetherian regular rings of dimension 2. Proc. Am. Math. Soc. 126, 1645–1653 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Wei He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, JW., Van Oystaeyen, F. & Zhang, Y. Deformations of Koszul Artin–Schelter Gorenstein algebras. manuscripta math. 141, 463–483 (2013). https://doi.org/10.1007/s00229-012-0580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0580-z

Mathematics Subject Classification (2000)

Navigation