Skip to main content
Log in

Pharmacogenetics of methotrexate in acute lymphoblastic leukaemia: why still at the bench level?

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The antifolate drug methotrexate (MTX) was introduced into clinical practice about 60 years ago and remains an important component of different acute lymphoblastic leukemia (ALL) treatment protocols. It acts by inhibiting several enzymes in the folate pathway, thereby resulting in the disruption of folate homeostasis. To date, treatment regimens have not been personalized despite there being experimental evidence that gene polymorphisms of folate metabolizing enzymes affect MTX response. The aim of this review was to evaluate the influence of genetic polymorphisms of the enzymes involved in the MTX pathway on ALL treatment outcomes and identify factors underlining the failure to personalize MTX therapy.

Methods

We conducted a literature search in PUBMED and Goggle scholar using the following key words: methotrexate, polymorphism, acute lymphoblastic leukemia, pharmacogenetics, pharmacogenomics and personalized mediciner.

Results

The reasons for the failure to personalize MTX therapy may be due to (1) most studies involving single-center, small-sized cohorts, (2) differences in MTX dose across different protocols, (3) failure to consider minimal residual disease as a risk factor for post-induction treatment, (4) differences in outcome criteria between studies and (5) failure to consider the folate levels of a patient before initiation of MTX therapy. Although high-throughput techniques allow the mapping of thousands of genetic polymorphisms in a single run, it remains a major challenge to dissect out folate-metabolizing enzymes which have a high impact on the efficacy and toxicity of MTX and which, therefore, could be the targets for intervention.

Conclusions

Prospective pharmacogenetic studies which consider all of the above-mentioned factors should be undertaken to facilitate the design of personalized MTX treatment for ALL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MTX:

Methotrexate

MTXPGs:

Methotrexate polyglutamates

PCR:

Polymerase chain reaction

MRD:

Minimal residual disease

FISH:

Fluorescent in-situ hybridization

LD:

Linkage disequilibrium

EFS:

Event free survival

References

  1. American Cancer Society. Cancer Facts & Figures 2011. Atlanta: American Cancer Society. Available from http://www.cancer.org/acs/groups/content@epidemiologysurveilance/documents/document/acspc-029771.

  2. Kulkarni KP, Arora RS, Marwaha RK (2011) Survival outcome of childhood acute lymphoblastic leukemia in India: a resource-limited perspective of more than 40 years. J Pediatr Hematol Oncol 33:475–479. doi:10.1097/MPH.0b013e31820e7361

    Article  PubMed  Google Scholar 

  3. Schrappe M, Hunger SP, Pui C-H et al (2012) Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med 366:1371–1381. doi:10.1056/NEJMoa1110169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Smith M, Arthur D, Camitta B et al (1996) Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol Off J Am Soc Clin Oncol 14:18–24

    CAS  Google Scholar 

  5. Schultz KR, Pullen DJ, Sather HN et al (2007) Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 109:926–935. doi:10.1182/blood-2006-01-024729

    Article  CAS  PubMed  Google Scholar 

  6. Pui C-H, Sandlund JT, Pei D et al (2004) Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood 104:2690–2696. doi:10.1182/blood-2004-04-1616

    Article  CAS  PubMed  Google Scholar 

  7. Szczepański T, Orfão A, van der Velden VH et al (2001) Minimal residual disease in leukaemia patients. Lancet Oncol 2:409–417

    Article  PubMed  Google Scholar 

  8. Conter V, Bartram CR, Valsecchi MG et al (2010) Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 115:3206–3214. doi:10.1182/blood-2009-10-248146

    Article  CAS  PubMed  Google Scholar 

  9. Borowitz MJ, Devidas M, Hunger SP et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111:5477–5485. doi:10.1182/blood-2008-01-132837

    Article  CAS  PubMed  Google Scholar 

  10. Estey EH, Appelbaum FR (eds) (2012) Leukemia and related disorders. Integrated treatment approaches series. Human Press, New York

  11. Galivan J (1980) Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol Pharmacol 17:105–110

    CAS  PubMed  Google Scholar 

  12. McGuire JJ, Bertino JR (1981) Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem 38 Spec No[Pt 1]:19–48

  13. Genestier L, Paillot R, Quemeneur L et al (2000) Mechanisms of action of methotrexate. Immunopharmacology 47:247–257

    Article  CAS  PubMed  Google Scholar 

  14. Szeto DW, Cheng YC, Rosowsky A et al (1979) Human thymidylate synthetase—III. Effects of methotrexate and folate analogs. Biochem Pharmacol 28:2633–2637

    Article  CAS  PubMed  Google Scholar 

  15. Chan ESL, Cronstein BN (2002) Molecular action of methotrexate in inflammatory diseases. Arthritis Res 4:266–273

    Article  PubMed Central  PubMed  Google Scholar 

  16. Schmiegelow K (2009) Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol 146:489–503. doi:10.1111/j.1365-2141.2009.07765.x

    Article  CAS  PubMed  Google Scholar 

  17. Davidsen ML, Dalhoff K, Schmiegelow K (2008) Pharmacogenetics influence treatment efficacy in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 30:831–849. doi:10.1097/MPH.0b013e3181868570

    Article  CAS  PubMed  Google Scholar 

  18. Gorlick R, Goker E, Trippett T et al (1996) Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med 335:1041–1048. doi:10.1056/NEJM199610033351408

    Article  CAS  PubMed  Google Scholar 

  19. Chango A, Emery-Fillon N, de Courcy GP et al (2000) A polymorphism (80G- > A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70:310–315. doi:10.1006/mgme.2000.3034

    Article  CAS  PubMed  Google Scholar 

  20. Laverdière C, Chiasson S, Costea I et al (2002) Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 100:3832–3834. doi:10.1182/blood.V100.10.3832

    Article  PubMed  Google Scholar 

  21. Leyva-Vázquez MA, Organista-Nava J, Gómez-Gómez Y et al (2012) Polymorphism G80A in the reduced folate carrier gene and its relationship to survival and risk of relapse in acute lymphoblastic leukemia. J Investig Med Off Publ Am Fed Clin Res 60:1064–1067. doi:10.231/JIM.0b013e31826803c1

    Google Scholar 

  22. Shimasaki N, Mori T, Samejima H et al (2006) Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 28:64–68. doi:10.1097/01.mph.0000198269.61948.90

    Article  CAS  PubMed  Google Scholar 

  23. Radtke S, Zolk O, Renner B et al (2013) Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 121:5145–5153. doi:10.1182/blood-2013-01-480335

    Article  CAS  PubMed  Google Scholar 

  24. Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S et al (2007) Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann Hematol 86:609–611. doi:10.1007/s00277-007-0274-x

    Article  PubMed  Google Scholar 

  25. Goldman ID, Matherly LH (1985) The cellular pharmacology of methotrexate. Pharmacol Ther 28:77–102

    Article  CAS  PubMed  Google Scholar 

  26. Olsen EA (1991) The pharmacology of methotrexate. J Am Acad Dermatol 25:306–318

    Article  CAS  PubMed  Google Scholar 

  27. König J, Cui Y, Nies AT, Keppler D (2000) A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 278:G156–G164

    PubMed  Google Scholar 

  28. Van de Steeg E, van der Kruijssen CMM, Wagenaar E et al (2009) Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos Biol Fate Chem 37:277–281. doi:10.1124/dmd.108.024315

    Article  PubMed  Google Scholar 

  29. Treviño LR, Shimasaki N, Yang W et al (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol Off J Am Soc Clin Oncol 27:5972–5978. doi:10.1200/JCO.2008.20.4156

    Article  Google Scholar 

  30. Ramsey LB, Panetta JC, Smith C et al (2013) Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood 121:898–904. doi:10.1182/blood-2012-08-452839

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J et al (2011) Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 57:612–619. doi:10.1002/pbc.23074

    Article  PubMed  Google Scholar 

  32. Danenberg PV (1977) Thymidylate synthetase - a target enzyme in cancer chemotherapy. Biochim Biophys Acta 473:73–92

    CAS  PubMed  Google Scholar 

  33. Horie N, Aiba H, Oguro K et al (1995) Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 20:191–197

    Article  CAS  PubMed  Google Scholar 

  34. Kaneda S, Nalbantoglu J, Takeishi K et al (1990) Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem 265:20277–20284

    CAS  PubMed  Google Scholar 

  35. Kawakami K, Salonga D, Park JM et al (2001) Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin Cancer Res Off J Am Assoc Cancer Res 7:4096–4101

    CAS  Google Scholar 

  36. Wang W, Marsh S, Cassidy J, McLeod HL (2001) Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res 61:5505–5510

    CAS  PubMed  Google Scholar 

  37. Krajinovic M, Costea I, Chiasson S (2002) Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 359:1033–1034. doi:10.1016/S0140-6736(02)08065-0

    Article  CAS  PubMed  Google Scholar 

  38. Krajinovic M, Costea I, Primeau M et al (2005) Combining several polymorphisms of thymidylate synthase gene for pharmacogenetic analysis. Pharmacogenomics J 5:374–380. doi:10.1038/sj.tpj.6500332

    Article  CAS  PubMed  Google Scholar 

  39. Lauten M, Asgedom G, Welte K et al (2003) Thymidylate synthase gene polymorphism and its association with relapse in childhood B-cell precursor acute lymphoblastic leukemia. Haematologica 88:353–354

    CAS  PubMed  Google Scholar 

  40. Pietrzyk JJ, Bik-Multanowski M, Skoczen S et al (2011) Polymorphism of the thymidylate synthase gene and risk of relapse in childhood ALL. Leuk Res 35:1464–1466. doi:10.1016/j.leukres.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  41. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113. doi:10.1038/ng0595-111

    Article  CAS  PubMed  Google Scholar 

  42. Weisberg I, Tran P, Christensen B et al (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172. doi:10.1006/mgme.1998.2714

    Article  CAS  PubMed  Google Scholar 

  43. Aplenc R, Thompson J, Han P et al (2005) Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 65:2482–2487. doi:10.1158/0008-5472.CAN-04-2606

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka Y, Manabe A, Nakadate H et al (2013) Methylenetetrahydrofolate reductase gene haplotypes affect toxicity during maintenance therapy for childhood acute lymphoblastic leukemia in Japanese patients. Leuk Lymphoma. doi:10.3109/10428194.2013.825902

    Google Scholar 

  45. Chiusolo P, Reddiconto G, Farina G et al (2007) MTHFR polymorphisms’ influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leuk Res 31:1669–1674. doi:10.1016/j.leukres.2007.03.028

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Fan J, Hochhauser D et al (1995) Lack of functional retinoblastoma protein mediates increased resistance to antimetabolites in human sarcoma cell lines. Proc Natl Acad Sci USA 92:10436–10440

    Article  CAS  PubMed  Google Scholar 

  47. Hochhauser D, Schnieders B, Ercikan-Abali E et al (1996) Effect of cyclin D1 overexpression on drug sensitivity in a human fibrosarcoma cell line. J Natl Cancer Inst 88:1269–1275

    Article  CAS  PubMed  Google Scholar 

  48. Costea I, Moghrabi A, Krajinovic M (2003) The influence of cyclin D1 (CCND1) 870A > G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics 13:577–580. doi:10.1097/01.fpc.0000054123.14659.57

    Article  CAS  PubMed  Google Scholar 

  49. Costea I, Moghrabi A, Laverdiere C et al (2006) Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica 91:1113–1116

    CAS  PubMed  Google Scholar 

  50. Dulucq S, St-Onge G, Gagné V et al (2008) DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL. Blood 111:3692–3700. doi:10.1182/blood-2007-09-110593

    Article  CAS  PubMed  Google Scholar 

  51. Al-Shakfa F, Dulucq S, Brukner I et al (2009) DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin Cancer Res Off J Am Assoc Cancer Res 15:6931–6938. doi:10.1158/1078-0432.CCR-09-0641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunitha Kodidela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 3

(DOCX 27 kb)

Table 4

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodidela, S., Suresh Chandra, P. & Dubashi, B. Pharmacogenetics of methotrexate in acute lymphoblastic leukaemia: why still at the bench level?. Eur J Clin Pharmacol 70, 253–260 (2014). https://doi.org/10.1007/s00228-013-1623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-013-1623-4

Keywords