Skip to main content

Advertisement

Log in

Effect of ritonavir on the pharmacokinetics of the benzimidazoles albendazole and mebendazole: an interaction study in healthy volunteers

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Benzimidazoles are often used concomitantly with protease inhibitors in patients with helminthic disease and HIV infection. Low bioavailability and extensive first-pass metabolism make benzimidazoles prone to pharmacokinetic drug interactions. The aim of the present study was to investigate potential drug interactions between the benzimidazoles albendazole and mebendazole and the potent CYP3A4 inhibitor ritonavir.

Methods

Sixteen healthy volunteers were administered a single oral dose of 1,000 mg mebendazole or 400 mg albendazole (2 × n = 8). AUC, Cmax, and t1/2 of mebendazole, albendazole, and albendazole sulfoxide were studied in absence and after short-term (2 doses) and long-term (8 days) treatment with ritonavir 200 mg bid.

Results

Pharmacokinetic parameters of albendazole and mebendazole were not changed by short-term administration of ritonavir. However, long-term administration of ritonavir resulted in significant changes in albendazole and mebendazole disposition, with a significant decrease in AUC0-24 (27 and 43% of baseline for albendazole and mebendazole, respectively) and Cmax (26 and 41% of baseline, respectively).

Conclusion

The AUC0-24 of benzimidazoles decreased after long-term use of ritonavir, while no changes in pharmacokinetic profiles were observed under short-term administration. These findings might help to optimize benzimidazole efficacy when used in combination with protease inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ammann RW, Eckert J (1996) Cestodes. Echinococcus. Gastroenterol Clin North Am 25(3):655–689

    Article  PubMed  CAS  Google Scholar 

  2. Hosseinipour MC, Napravnik S, Joaki G, Gama S, Mbeye N, Banda B, Martinson F, Hoffman I, Cohen MS (2007) HIV and parasitic infection and the effect of treatment among adult outpatients in Malawi. J Infect Dis 195(9):1278–1282

    Article  PubMed  Google Scholar 

  3. Zingg W, Renner-Schneiter EC, Pauli-Magnus C, Renner EL, van Overbeck J, Schlapfer E, Weber M, Weber R, Opravil M, Gottstein B, Speck RF (2004) Alveolar echinococcosis of the liver in an adult with human immunodeficiency virus type-1 infection. Infection 32(5):299–302

    Article  PubMed  CAS  Google Scholar 

  4. Marriner SE, Morris DL, Dickson B, Bogan JA (1986) Pharmacokinetics of albendazole in man. Eur J Clin Pharmacol 30(6):705–708

    Article  PubMed  CAS  Google Scholar 

  5. Dawson M, Allan RJ, Watson TR (1982) The pharmacokinetics and bioavailability of mebendazole in man: a pilot study using [3H]-mebendazole. Br J Clin Pharmacol 14(3):453–455

    PubMed  CAS  Google Scholar 

  6. Villaverde C, Alvarez AI, Redondo P, Voces J, Del Estal JL, Prieto JG (1995) Small intestinal sulphoxidation of albendazole. Xenobiotica 25(5):433–441

    Article  PubMed  CAS  Google Scholar 

  7. Rawden HC, Kokwaro GO, Ward SA, Edwards G (2000) Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes. Br J Clin Pharmacol 49(4):313–322

    Article  PubMed  CAS  Google Scholar 

  8. Souhaili-El Amri H, Mothe O, Totis M, Masson C, Batt AM, Delatour P, Siest G (1988) Albendazole sulfonation by rat liver cytochrome P-450c. J Pharmacol Exp Ther 246(2):758–764

    PubMed  CAS  Google Scholar 

  9. Merino G, Molina AJ, Garcia JL, Pulido MM, Prieto JG, Alvarez AI (2003) Intestinal elimination of albendazole sulfoxide: pharmacokinetic effects of inhibitors. Int J Pharm 263(1–2):123–132

    Article  PubMed  CAS  Google Scholar 

  10. Bekhti A, Pirotte J (1987) Cimetidine increases serum mebendazole concentrations. Implications for treatment of hepatic hydatid cysts. Br J Clin Pharmacol 24(3):390–392

    PubMed  CAS  Google Scholar 

  11. Gottschall DW, Theodorides VJ, Wang R (1990) The metabolism of benzimidazole anthelmintics. Parasitol Today 6(4):115–124

    Article  PubMed  CAS  Google Scholar 

  12. Luder PJ, Siffert B, Witassek F, Meister F, Bircher J (1986) Treatment of hydatid disease with high oral doses of mebendazole. Long-term follow-up of plasma mebendazole levels and drug interactions. Eur J Clin Pharmacol 31(4):443–448

    Article  PubMed  CAS  Google Scholar 

  13. Ernest CS 2nd, Hall SD, Jones DR (2005) Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 312(2):583–591

    Article  PubMed  CAS  Google Scholar 

  14. Culm-Merdek KE, von Moltke LL, Gan L, Horan KA, Reynolds R, Harmatz JS, Court MH, Greenblatt DJ (2006) Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: comparison with ritonavir. Clin Pharmacol Ther 79(3):243–254

    Article  PubMed  CAS  Google Scholar 

  15. Dixit V, Hariparsad N, Li F, Desai P, Thummel KE, Unadkat JD (2007) Cytochrome P450 enzymes and transporters induced by anti-HIV protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab Dispos 35:1853–1859

    Article  PubMed  CAS  Google Scholar 

  16. Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ Jr, Klein CE, Rublein JC, Kashuba AD (2006) Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 42(1):52–60

    PubMed  CAS  Google Scholar 

  17. Wyen C, Fuhr U, Frank D, Aarnoutse R, Klaassen T, Lazar A, Seeringer A, Doroshyenko O, Kirchheiner J, Abdulrazik F, Schmeisser N, Lehmann C, Hein W, Schomig E, Burger D, Fatkenheuer G, Jetter A (2008) Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther 84:75–82

    Article  PubMed  CAS  Google Scholar 

  18. Mirfazaelian A, Dadashzadeh S, Rouini MR (2002) Effect of gender in the disposition of albendazole metabolites in humans. Eur J Clin Pharmacol 58(6):403–408

    Article  PubMed  CAS  Google Scholar 

  19. Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Molla A, Valdes J, Smith J, Erdman K, Lyons N, Niu P, Decourt JP, Fourtillan JB, Girault J, Leonard JM (1997) Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 41(5):898–905

    PubMed  CAS  Google Scholar 

  20. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, Segal Y, Aberg JA, Blaschke T, Alston B, Fang F, Kosel B, Aweeka F (2002) Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. Aids 16(4):569–577

    Article  PubMed  CAS  Google Scholar 

  21. FDA (2006) Guidance for industry. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. FDA, Washington DC

  22. Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM (2003) Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59(5–6):429–442

    Article  PubMed  CAS  Google Scholar 

  23. Merino G, Jonker JW, Wagenaar E, Pulido MM, Molina AJ, Alvarez AI, Schinkel AH (2005) Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metab Dispos 33(5):614–618

    Article  PubMed  CAS  Google Scholar 

  24. Foisy MM, Yakiwchuk EM, Hughes CA (2008) Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother 42(7):1048–1059

    Article  PubMed  CAS  Google Scholar 

  25. Smith CM, Faucette SR, Wang H, LeCluyse EL (2005) Modulation of UDP-glucuronosyltransferase 1A1 in primary human hepatocytes by prototypical inducers. J Biochem Mol Toxicol 19(2):96–108

    Article  PubMed  CAS  Google Scholar 

  26. van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, Caliskan-Yassen N, Koopmans PP, Burger DM (2006) Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther 80(2):159–168

    Article  PubMed  CAS  Google Scholar 

  27. Schipper HG, Koopmans RP, Nagy J, Butter JJ, Kager PA, Van Boxtel CJ (2000) Effect of dose increase or cimetidine co-administration on albendazole bioavailability. Am J Trop Med Hyg 63(5–6):270–273

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascia Corti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corti, N., Heck, A., Rentsch, K. et al. Effect of ritonavir on the pharmacokinetics of the benzimidazoles albendazole and mebendazole: an interaction study in healthy volunteers. Eur J Clin Pharmacol 65, 999–1006 (2009). https://doi.org/10.1007/s00228-009-0683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0683-y

Keywords

Navigation