Skip to main content

Advertisement

Log in

Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson’s disease

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The substantial weight loss in Parkinson’s patients may be related to direct influences of levodopa treatment on fat mobilization/oxidation. We assessed systemic and local metabolic responses to levodopa/benserazide in patients with idiopathic Parkinson’s disease.

Methods

We studied 10 Parkinson’s disease patients and examined adipose tissue and skeletal muscle metabolism directly with microdialysis. We monitored dialysate concentrations of ethanol, glucose, lactate, pyruvate, and glycerol to assess tissue blood flow and metabolism before and after levodopa/benserazide intake. We also conducted in vitro studies on adipocytes from healthy women.

Results

Levodopa/benserazide increased serum levodopa, 3,4-dihydroxyphenylacetic acid (DOPAC), and norepinephrine (P < 0.01). Serum adipose tissue and skeletal muscle glycerol did not change or decreased. Adipose tissue glycerol was inversely correlated with serum levodopa concentrations (P < 0.05). In isolated adipocytes, levodopa attenuated isoproterenol-induced glycerol release (P < 0.05).

Conclusion

Levodopa/benserazide elicits pronounced metabolic changes in both adipose tissue and skeletal muscle with a switch from lipid to carbohydrate metabolism. In adipose tissue, levodopa/benserazide failed to activate lipolysis. Therefore, we suggest that levodopa/benserazide does not induce fat wasting through direct and acute influences on adipose tissue metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Markus HS, Tomkins AM, Stern GM (1993) Increased prevalence of undernutrition in Parkinson’s disease and its relationship to clinical disease parameters. J Neural Transm Parkinson’s Dis Dement Sect 5:117–125

    Article  CAS  Google Scholar 

  2. Davies KN, King D, Davies H (1994) A study of the nutritional status of elderly patients with Parkinson’s disease. Age Ageing 23:142–145

    Article  PubMed  CAS  Google Scholar 

  3. Bachmann CG, Trenkwalder C (2006) Body weight in patients with Parkinson’s disease. Mov Disord 21:1824–1830

    Article  PubMed  Google Scholar 

  4. Palhagen S, Lorefalt B, Carlsson M et al (2005) Does L-dopa treatment contribute to reduction in body weight in elderly patients with Parkinson’s disease? Acta Neurol Scand 111:12–20

    Article  PubMed  CAS  Google Scholar 

  5. Toth MJ, Fishman PS, Poehlman ET (1997) Free-living daily energy expenditure in patients with Parkinson’s disease. Neurology 48:88–91

    PubMed  CAS  Google Scholar 

  6. Abbott RA, Cox M, Markus H et al (1992) Diet, body size and micronutrient status in Parkinson’s disease. Eur J Clin Nutr 46:879–884

    PubMed  CAS  Google Scholar 

  7. Lorefalt B, Ganowiak W, Palhagen S et al (2004) Factors of importance for weight loss in elderly patients with Parkinson’s disease. Acta Neurol Scand 110:180–187

    Article  PubMed  CAS  Google Scholar 

  8. Macia F, Perlemoine C, Coman I et al (2004) Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord 19:206–212

    Article  PubMed  Google Scholar 

  9. Giroux ML (2007) Parkinson disease: managing a complex, progressive disease at all stages. Cleve Clin J Med 74:313–320

    Article  PubMed  Google Scholar 

  10. Boyd AE III, Lebovitz HE, Pfeiffer JB (1970) Stimulation of human-growth-hormone secretion by L-dopa. N Engl J Med 283:1425–1429

    PubMed  Google Scholar 

  11. Sirtori CR, Bolme P, Azarnoff DL (1972) Metabolic responses to acute and chronic L-dopa administration in patients with parkinsonism. N Engl J Med 287:729–733

    PubMed  CAS  Google Scholar 

  12. Deleu D, Sarre S, Ebinger G et al (1993) Simultaneous monitoring of levodopa, dopamine and their metabolites in skeletal muscle and subcutaneous tissue in different pharmacological conditions using microdialysis. J Pharm Biomed Anal 11:577–585

    Article  PubMed  CAS  Google Scholar 

  13. Pizzinat N, Marti L, Remaury A et al (1999) High expression of monoamine oxidases in human white adipose tissue: evidence for their involvement in noradrenaline clearance. Biochem Pharmacol 58:1735–1742

    Article  PubMed  CAS  Google Scholar 

  14. Morin N, Lizcano JM, Fontana E et al (2001) Semicarbazide-sensitive amine oxidase substrates stimulate glucose transport and inhibit lipolysis in human adipocytes. J Pharmacol Exp Ther 297:563–572

    PubMed  CAS  Google Scholar 

  15. Adams F, Boschmann M, Schaller K et al (2006) Tyramine in the assessment of regional adrenergic function. Biochem Pharmacol 72:1724–1729

    Article  PubMed  CAS  Google Scholar 

  16. Bairras C, Ferrand C, Atgie C (2003) Effect of tyramine, a dietary amine, on glycerol and lactate release by isolated adipocytes from old rats. J Physiol Biochem 59:161–167

    PubMed  CAS  Google Scholar 

  17. Boschmann M, Krupp G, Luft FC et al (2002) In vivo response to alpha(1)-adrenoreceptor stimulation in human white adipose tissue. Obes Res 10:555–558

    Article  PubMed  CAS  Google Scholar 

  18. Jordan J, Tank J, Stoffels M et al (2001) Interaction between beta-adrenergic receptor stimulation and nitric oxide release on tissue perfusion and metabolism. J Clin Endocrinol Metab 86:2803–2810

    Article  PubMed  CAS  Google Scholar 

  19. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  20. Hughes AJ, Ben-Shlomo Y, Daniel SE et al (1992) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 42:1142–1146

    PubMed  CAS  Google Scholar 

  21. Arner P, Bolinder J, Eliasson A et al (1988) Microdialysis of adipose tissue and blood for in vivo lipolysis studies. Am J Physiol 255:E737–E742

    PubMed  CAS  Google Scholar 

  22. Janke J, Engeli S, Gorzelniak K et al (2002) Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 51:1699–1707

    Article  PubMed  CAS  Google Scholar 

  23. Han SK, Mytilineou C, Cohen G (1996) L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress. J Neurochem 66:501–510

    Article  PubMed  CAS  Google Scholar 

  24. Fellander G, Linde B, Bolinder J (1996) Evaluation of the microdialysis ethanol technique for monitoring of subcutaneous adipose tissue blood flow in humans. Int J Obes Relat Metab Disord 20:220–226

    PubMed  CAS  Google Scholar 

  25. Stallknecht B, Lorentsen J, Enevoldsen LH et al (2001) Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans. J Physiol 536:283–294

    Article  PubMed  CAS  Google Scholar 

  26. Kurpad A, Khan K, Calder AG et al (1994) Effect of noradrenaline on glycerol turnover and lipolysis in the whole body and subcutaneous adipose tissue in humans in vivo. Clin Sci 86:177–184

    PubMed  CAS  Google Scholar 

  27. Smith JL, Ju JS, Saha BM et al (2004) Levodopa with carbidopa diminishes glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in rat skeletal muscle. J Appl Physiol 97:2339–2346

    Article  PubMed  CAS  Google Scholar 

  28. Smith JL, Patil PB, Minteer SD et al (2005) Possibility of autocrine beta-adrenergic signaling in C2C12 myotubes. Exp Biol Med 230:845–852

    CAS  Google Scholar 

  29. Rose S, Jenner P, Marsden CD (1988) The effect of carbidopa on plasma and muscle levels of L-dopa, dopamine, and their metabolites following L-dopa administration to rats. Mov Disord 3:117–125

    Article  PubMed  CAS  Google Scholar 

  30. Coppack SW, Persson M, Judd RL et al (1999) Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue in vivo. Am J Physiol 276:E233–E240

    PubMed  CAS  Google Scholar 

  31. Duncan RE, Ahmadian M, Jaworski K et al (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  PubMed  CAS  Google Scholar 

  32. Mauras N, Haymond MW (2005) Are the metabolic effects of GH and IGF-I separable? Growth Horm IGF Res 15:19–27

    Article  PubMed  CAS  Google Scholar 

  33. Hellström L, Wahrenberg H, Reynisdottir S et al (1997) Catecholamine-induced adipocyte lipolysis in human hyperthyroidism. J Clin Endocrinol Metab 82:159–166

    Article  PubMed  Google Scholar 

  34. Dizdar N, Kullman A, Norlander B et al (1999) Human pharmacokinetics of L-3,4-dihydroxyphenylalanine studied with microdialysis. Clin Chem 45:1813–1820

    PubMed  CAS  Google Scholar 

  35. Visentin V, Prevot D, Marti L et al (2003) Inhibition of rat fat cell lipolysis by monoamine oxidase and semicarbazide-sensitive amine oxidase substrates. Eur J Pharmacol 466:235–243

    Article  PubMed  CAS  Google Scholar 

  36. Lyytinen J, Kaakkola S, Ahtila S et al (1997) Simultaneous MAO-B and COMT inhibition in L-dopa-treated patients with Parkinson’s disease. Mov Disord 12:497–505

    Article  PubMed  CAS  Google Scholar 

  37. Flechtner-Mors M, Jenkinson CP, Alt A et al (2005) Studies of phosphodiesterase effects on adipose tissue metabolism in obese subjects by the microdialysis technique. J Physiol Pharmacol 56:355–368

    PubMed  CAS  Google Scholar 

  38. Goossens GH, Blaak EE, Saris WH et al (2004) Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab 89:2690–2696

    Article  PubMed  CAS  Google Scholar 

  39. Sandyk R (1993) The relationship between diabetes mellitus and Parkinson’s disease. Int J Neurosci 69:125–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Henning Damm, Katrin Sprengel, and Janin Andres for expert technical assistance and the Department of Surgery at the Vivantes Klinikum Prenzlauer Berg in Berlin for providing us with adipose tissue samples.

Conflict of Interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frauke Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, F., Boschmann, M., Lobsien, E. et al. Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson’s disease. Eur J Clin Pharmacol 64, 863–870 (2008). https://doi.org/10.1007/s00228-008-0532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0532-4

Keywords

Navigation