Skip to main content

Advertisement

Log in

Genetic polymorphism of CYP1A2 and the toxicity of leflunomide treatment in rheumatoid arthritis patients

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Leflunomide is a disease-modifying antirheumatic drug used for treating rheumatoid arthritis (RA). In vitro studies demonstrated that cytochromes P450 (CYPs), mainly CYP1A2 and CYP2C19, might be involved in leflunomide activation. The aim of our study was to investigate whether genetic polymorphisms of CYP1A2, CYP2C19, and CYP2C9 influence leflunomide toxicity.

Methods

A genotyping approach was used to determine CYP1A2*1F, CYP2C19*2, CYP2C19*17, CYP2C9*2, and CYP2C9*3 alleles in 105 RA patients.

Results

Leflunomide treatment was well tolerated by 62 patients, whereas 43 patients discontinued the treatment within the first year due to toxicity. Patients with CYP1A2*1F CC genotype had a 9.7-fold higher risk for overall leflunomide-induced toxicity than did the carriers of CYP1A2*1F A allele [P = 0.002, odds ratio = 9.708, 95% confidence interval = 2.276–41.403]. No significant association between the CYP2C19 and CYP2C9 genotypes and the leflunomide toxicity was observed.

Conclusion

Our results suggest that the CYP1A2*1F allele may be associated with leflunomide toxicity in RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mladenovic V, Domljan Z, Rozman B, Jajic I, Mihajlovic D, Dordevic J et al (1995) Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis Rheum 38:1595–1603

    Article  PubMed  CAS  Google Scholar 

  2. Kalgutkar AS, Nguyen HT, Vaz AD, Doan A, Dalvie DK, McLeod DG et al (2003) In vitro metabolism studies on the isoxazole ring scission in the anti-inflammatory agent lefluonomide to its active alpha-cyanoenol metabolite A771726: mechanistic similarities with the cytochrome P450-catalyzed dehydration of aldoximes. Drug Metab Dispos 31:1240–1250

    Article  PubMed  CAS  Google Scholar 

  3. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449

    Article  PubMed  CAS  Google Scholar 

  4. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598

    PubMed  Google Scholar 

  5. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  6. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113

    Article  PubMed  CAS  Google Scholar 

  7. He P, Court MH, Greenblatt DJ, Von Moltke LL (2005) Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 77:373–387

    Article  PubMed  CAS  Google Scholar 

  8. Chonlahan J, Halloran MA, Hammonds A (2006) Leflunomide and warfarin interaction: case report and review of the literature. Pharmacotherapy 26:868–871

    Article  PubMed  Google Scholar 

  9. Lim V, Pande I (2002) Leflunomide can potentiate the anticoagulant effect of warfarin. BMJ 325:1333

    Article  PubMed  CAS  Google Scholar 

  10. Sevilla-Mantilla C, Ortega L, Agundez JA, Fernandez-Gutierrez B, Ladero JM, Diaz-Rubio M (2004) Leflunomide-induced acute hepatitis. Dig Liver Dis 36:82–84

    Article  PubMed  CAS  Google Scholar 

  11. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    Article  PubMed  CAS  Google Scholar 

  12. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM et al (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6:341–349

    Article  PubMed  CAS  Google Scholar 

  13. Kunkel G, Cannon G (2006) Leflunomide in the treatment of rheumatoid arthritis. Expert Rev Clin Immunol 2:17–31

    Article  CAS  Google Scholar 

  14. Aletaha D, Stamm T, Kapral T, Eberl G, Grisar J, Machold KP et al (2003) Survival and effectiveness of leflunomide compared with methotrexate and sulfasalazine in rheumatoid arthritis: a matched observational study. Ann Rheum Dis 62:944–951

    Article  PubMed  CAS  Google Scholar 

  15. van Roon EN, Jansen TL, van de Laar MA, Janssen M, Yska JP, Keuper R et al (2005) Therapeutic drug monitoring of A77 1726, the active metabolite of leflunomide: serum concentrations predict response to treatment in patients with rheumatoid arthritis. Ann Rheum Dis 64:569–574

    Article  PubMed  Google Scholar 

  16. Chan V, Charles BG, Tett SE (2005) Population pharmacokinetics and association between A77 1726 plasma concentrations and disease activity measures following administration of leflunomide to people with rheumatoid arthritis. Br J Clin Pharmacol 60:257–264

    Article  PubMed  CAS  Google Scholar 

  17. Li EK, Tam LS, Tomlinson B (2004) Leflunomide in the treatment of rheumatoid arthritis. Clin Ther 26:447–459

    Article  PubMed  CAS  Google Scholar 

  18. Rozman B (2002) Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 41:421–430

    Article  PubMed  CAS  Google Scholar 

  19. Smolen JS, Kalden JR, Scott DL, Rozman B, Kvien TK, Larsen A et al (1999) Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. European Leflunomide Study Group. Lancet 353:259–266

    Article  PubMed  CAS  Google Scholar 

  20. Tiilikainen A, Fischer G, Grubic Z, Gyodi E, Ivaskova E, Jungerman M et al (1997) Anthropological features of the East European region. In: Charron D (ed) HLA: genetic diversity of HLA functional and medical implication. Proceedings of the 12th International Histocompatibility Workshop and Conference, EDK, Medical and Scientific International Publisher, Paris

  21. Vidan-Jeras B, Jurca B, Dolzan V, Jeras M, Breskvar K, Bohinjec M (1998) Caucasian Slovenian normal. In: Gjertson D, Terasaki P (eds) HLA 1998, American society for histocompatibility and immunogenetics, Lenexa

  22. Herman D, Dolzan V, Breskvar K (2003) Genetic polymorphism of cytochromes P450 2C9 and 2C19 in Slovenian population. Zdrav Vestn 72:347–351

    Google Scholar 

  23. van Roon EN, Yska JP, Raemaekers J, Jansen TL, van Wanrooy M, Brouwers JR (2004) A rapid and simple determination of A77 1726 in human serum by high-performance liquid chromatography and its application for optimization of leflunomide therapy. J Pharm Biomed Anal 36:17–22

    Article  PubMed  Google Scholar 

  24. Han XM, Ouyang DS, Chen XP, Shu Y, Jiang CH, Tan ZR et al (2002) Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol 54:540–543

    Article  PubMed  CAS  Google Scholar 

  25. Rost KL, Roots I (1994) Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 55:402–411

    PubMed  CAS  Google Scholar 

  26. Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L (2007) Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 63:537–546

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Magnus Ingelman-Sundberg and Sarah Sim from Karolinska Institute, Stockholm, Sweden, for kindly providing control DNA samples with known CYP2C19 *17 genotype.

We acknowledge Mojca Kos-Golja, M.D., Sonja Praprotnik, M.D., Ph.D., Aleš Ambrožič, M.D., Ph.D., Cvetka Kastelic-Klasinc, M.D., and Boris Lestan, M.D., M.Sc. from the Department of Rheumatology, University Medical Centre Ljubljana, Slovenia, for referring the patients. We thank Milena Pavić-Nikolić for her excellent technical support. We are especially grateful to Snežna Sodin-Šemrl, M.S., Ph.D. for language corrections. This work was financially supported by The Slovenian Research Agency, grant no. PO-0503–0381. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vita Dolžan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohanec Grabar, P., Rozman, B., Tomšič, M. et al. Genetic polymorphism of CYP1A2 and the toxicity of leflunomide treatment in rheumatoid arthritis patients. Eur J Clin Pharmacol 64, 871–876 (2008). https://doi.org/10.1007/s00228-008-0498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0498-2

Keywords

Navigation