Skip to main content

Advertisement

Log in

Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima

  • Short Note
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Elevated temperature and decreased ocean pH (ocean acidification) are associated with anthropogenic climate change and can adversely affect fertilization and development in marine invertebrates. However, the potential synergistic impact of these stressors on fertilization success remains unresolved for many ecologically and economically important species including giant clams of the genus Tridacna. Individual and interactive effects of warming and acidification on fertilization (successful first cleavage) were investigated in the small giant clam, Tridacna maxima. Experiments were performed on gametes of T. maxima (collected in October 2015 from the island of Moorea, French Polynesia; 17.54° S, 149.83° W) fertilized under ambient conditions (27 °C, pH 8.1) and under conditions congruent with temperature and pH projections for the coming century (31 °C, pH 7.6). Fertilization success was low, but within previously reported levels, under ambient conditions (47.7 ± 3.4%) and was significantly reduced at elevated temperature per se and in combination with lowered pH (18.5 ± 4.4% and 21.2 ± 4.6%, respectively). However, acidification alone had no effect on fertilization success in T. maxima (48.2 ± 3.1%). These results indicate that although fertilization in T. maxima is resilient to lowered pH, it is strongly inhibited by elevated temperature. Populations of T. maxima may, therefore, be at risk of low reproductive success over the coming century as a result of rising ocean temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Andréfouët S, Van Wynsberge S, Gaertner-Mazouni N, Menkes C, Gilbert A, Remoissenet G (2013) Climate variability and massive mortalities challenge giant clam conservation and management efforts in French Polynesia atolls. Biol Conserv 160:190–199. https://doi.org/10.1016/j.biocon.2013.01.017

    Article  Google Scholar 

  • Armstrong EJ (2017) Ion-regulatory and developmental physiology of giant clams (Genus Tridacna) and their conservation status on the island of Mo’orea, French Polynesia. Dissertation, University of California, Berkeley

    Google Scholar 

  • Armstrong EJ, Allen TR, Beltrand M, Dubousquet V, Stillman JH, Mills SC (2017) High pCO2 and elevated temperature reduce survival and alter development in early life stages of the tropical sea hare Stylocheilus striatus. Mar Biol 164:107. https://doi.org/10.1007/s00227-017-3133-x

    Article  Google Scholar 

  • Beckvar N (1981) Cultivation, spawning, and growth of the giant clams Tridacna gigas, T. derasa, and T. squamosa in Palau, Caroline Islands. Aquaculture 24:21–30. https://doi.org/10.1016/0044-8486(81)90040-5

    Article  Google Scholar 

  • Braley RD (1992) The giant clam: a hatchery and nursery culture manual. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Bylenga CH, Cummings VJ, Ryan KG (2015) Fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, under reduced pH and elevated temperatures. Mar Ecol Prog Ser 536:187–201. https://doi.org/10.3354/meps11436

    Article  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol An Annu Rev 49:1–42. https://doi.org/10.1016/j.marenvres.2011.10.00

    Article  Google Scholar 

  • Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53:582–596. https://doi.org/10.1093/icb/ict049

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc R Soc B Biol Sci 276:1883–1888. https://doi.org/10.1098/rspb.2008.1935

    Article  Google Scholar 

  • Chambers CNL (2007) Pasua (Tridacna maxima) size and abundance in Tongareva Lagoon, Cook Islands. SPC Trochus Inf Bull 13:7–12

    Google Scholar 

  • Core Team R (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Crawford CM, Nash WJ, Lucas JS (1986) Spawning induction, and larval and juvenile rearing of the giant clam, Tridacna gigas. Aquaculture 58:281–295. https://doi.org/10.1016/0044-8486(86)90094-3

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Publ 3:1–191

    Google Scholar 

  • Dorey N, Lançon P, Thorndyke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Chang Biol 19:3355–3367. https://doi.org/10.1111/gcb.12276

    Article  PubMed  Google Scholar 

  • Dubousquet V, Gros E, Berteaux-Lecellier V, Viguier B, Raharivelomanana P, Bertrand C, Lecellier GJ (2016) Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biol Open 5:1400–1407. https://doi.org/10.1242/bio.017921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. https://doi.org/10.3354/meps07800

    Article  CAS  Google Scholar 

  • Elfwing T, Plantman P, Tedengren M, Wijnbladh E (2001) Responses to temperature, heavy metal and sediment stress by the giant clam Tridacna squamosa. Mar Freshw Behav Physiol 34:239–248. https://doi.org/10.1080/10236240109379077

    Article  CAS  Google Scholar 

  • Ellis S (1997) Spawning and early larval rearing of giant clams (Bivalvia: Tridacnidae). In: Publication (Center for Tropical and Subtropical Aquaculture), no 130. Center for Tropical and Subtropical Aquaculture, Waimanalo, Hawaii

    Google Scholar 

  • Enricuso OB, Conaco C, Sayco SLG, Neo ML, Cabaitan PC (2019) Elevated seawater temperatures affect embryonic and larval development in the giant clam Tridacna gigas (Cardiidae: Tridacninae). J Molluscan Stud 85:66–72

    Article  Google Scholar 

  • Espinel-Velasco N, Hoffmann L, Aguera A, Byrne M, Dupont S, Uthicke S, Webster NS, Lamare M (2018) Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Mar Ecol Prog Ser 606:237–257

    Article  Google Scholar 

  • Gazeau F, Parker LM, Comeau S, Gattuso J-P, O’Connor WA, Martin S, Pörtner HO, Ross PM (2013) Impacts of ocean acidification on marine shelled molluscs. Mar Biol 160:2207–2245. https://doi.org/10.1007/s00227-013-2219-3

    Article  CAS  Google Scholar 

  • Gilbert A, Remoissenet G, Yan L, Andréfouët S (2006a) Special traits and promises of the giant clam (Tridacna maxima) in French Polynesia. SPC Fish Newslett 118:44–52

    Google Scholar 

  • Gilbert A, Andréfouët S, Yan L, Remoissenet G (2006b) The giant clam Tridacna maxima communities of three French Polynesia islands: comparison of their population sizes and structures at early stages of their exploitation. ICES J Mar Sci 63:1573–1589. https://doi.org/10.1016/j.icesjms.2006.07.001

    Article  Google Scholar 

  • Goerg G (2011) Lambert W random variables - a new family of generalized skewed distributions with applications to risk estimation. Ann Appl Stat 3:2197–2230

    Article  Google Scholar 

  • Goerg G (2015) The lambert way to gaussianize heavy-tailed data with the inverse of Tukey’s h transformation as a special case. Sci World J 2015:1–16. https://doi.org/10.1155/2015/909231

    Article  Google Scholar 

  • Gribben PE, Millar RB, Jeffs AG (2014) Fertilization success of the New Zealand geoduck, Panopea zelandica: effects of sperm concentration, gamete age and contact time. Aquac Res 45:1380–1388. https://doi.org/10.1111/are.12085

    Article  Google Scholar 

  • Gunderson AR, Armstrong EJ, Stillman JH (2015) Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann Rev Mar Sci 8:357–378. https://doi.org/10.1146/annurev-marine-122414-033953

    Article  PubMed  Google Scholar 

  • Harvey BP, Gwynn-Jones D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3:1016–1030. https://doi.org/10.1002/ece3.516

    Article  PubMed  PubMed Central  Google Scholar 

  • Havenhand JN, Butler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:651–652

    Article  Google Scholar 

  • IGBP, Ioc, SCOR (2013) Ocean acidification summary for policymakers–third symposium on the ocean in a high-CO2 world. International Geosphere-Biosphere Programme, Stockholm

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Jameson S (1976) Early life history of the giant clams Tridacna crocea Lamarck, Tridacna maxima (Röding), and Hippopus hippopus (Linnaeus). Pac Sci 30:219–233

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. https://doi.org/10.1111/j.1461-0248.2010.01518.x

    Article  PubMed  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. https://doi.org/10.3354/meps07802

    Article  CAS  Google Scholar 

  • Kurihara H, Shikota T (2018) Impact of increased seawater pCO2 on the host and symbiotic algae of juvenile giant clam Tridacna crocea. Galaxea J Coral Reef Stud 20:19–28

    Article  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169. https://doi.org/10.3354/meps274161

    Article  Google Scholar 

  • Lavigne H, Epitalon J-M, Gattuso J-P (2011) seacarb: seawater carbonate chemistry with R. R package version 3.0. http://CRAN.R-project.org/package=seacarb

  • Lucas JS (1988) Giant clams: description, distribution and life history. In: Copland J, Lucas JS (eds) Giant clams in Asia and the Pacific. ACIAR Monograph, Canberra, pp 21–32

    Google Scholar 

  • Lucas JS (1994) The biology, exploitation, and mariculture of giant clams (Tridacnidae). Rev Fish Sci 2:181–223. https://doi.org/10.1080/10641269409388557

    Article  Google Scholar 

  • Menoud M, Van Wynsberge S, Le Moullac G, Levy P, Andréfouët S, Remoissenet G, Gaertner-Mazouni N (2016) Identifying robust proxies of gonad maturation for the protandrous hermaphrodite Tridacna maxima (Röding, 1798, Bivalvia) from individual to population scale. J Shellfish Res 35:51–61. https://doi.org/10.2983/035.035.0107

    Article  Google Scholar 

  • Mies M, Sumida PYG (2012) Giant clam aquaculture: a review on induced spawning and larval rearing. Int J Marine Sci 2:62–69

    Google Scholar 

  • Mies M, Braga F, Scozzafave MS, de Lemos DEL, Sumida PYG (2012) Early development, survival and growth rates of the giant clam Tridacna crocea (Bivalvia: Tridacnidae). Brazilian J Oceanogr 60:127–133

    Article  Google Scholar 

  • Mies M, Güth AZ, Castro CB, Pires DO, Calderon EN, Pompeu M, Sumida PYG (2018) Bleaching in reef invertebrate larvae associated with Symbiodinium strains within clades A–F. Mar Biol 165:1–9. https://doi.org/10.1007/s00227-017-3263-1

    Article  CAS  Google Scholar 

  • Militz TA, Braley RD, Schoeman DS, Southgate PC (2019) Larval and early juvenile culture of two giant clam (Tridacninae) hybrids. Aquaculture 500:500–505. https://doi.org/10.1016/j.aquaculture.2018.10.050

    Article  Google Scholar 

  • Moorhead A (2018) Giant clam aquaculture in the Pacific region: perceptions of value and impact. Dev Pract 28:624–635. https://doi.org/10.1080/09614524.2018.1467378

    Article  Google Scholar 

  • Nash WJ, Pearson RG, Westmore SP (1988) A histological study of the reproduction in the giant clam Tridacna gigas in the northcentral Great Barrier Reef. In: Copland JW, Lucas JS (eds) Giant clams in Asia and the Pacific. ACIAR Monograph, Canberra, pp 89–94

    Google Scholar 

  • Neo ML, Todd PA (2013) Conservation status reassessment of giant clams (Mollusca : Bivalvia : Tridacninae) in Singapore. Nat Singap 6:125–133

    Google Scholar 

  • Neo ML, Todd PA, Chou LM, Teo SL-M (2011) Spawning induction and larval development in the fluted giant clam, Tridacna squamosa (Bivalvia:Tridacnidae). Nat Singap 4:157–161

    Google Scholar 

  • Neo ML, Todd PA, Teo SL-M, Chou LM (2013) The effects of diet, temperature and salinity on larvae of the fluted giant clam, Tridacna squamosa. J Conchol 41:369–376

    Google Scholar 

  • Neo ML, Eckman W, Vicentuan K, Teo SL-M, Todd PA (2015a) The ecological significance of giant clams in coral reef ecosystems. Biol Conserv 181:111–123. https://doi.org/10.1016/j.biocon.2014.11.004

    Article  Google Scholar 

  • Neo ML, Vicentuan K, Teo SL-M, Erftemeijer PLA, Todd PA (2015b) Larval ecology of the fluted giant clam, Tridacna squamosa, and its potential effects on dispersal models. J Exp Mar Bio Ecol 469:76–82. https://doi.org/10.1016/j.jembe.2015.04.012

    Article  Google Scholar 

  • Neo ML, Wabnitz CCC, Braley RD, Heslinga GA, Fauvelot C, Van Wynsberge S, Andréfouët S, Waters C, Shau-Hwai Tan A, Gomez ED, Costello MJ, Todd PA (2017) Giant clams (Bivalvia: Cardiidae: Tridacninae): a comprehensive update of species and their distribution, current threats and conservation status. Oceanogr Mar Biol An Annu Rev 55:87–388

    Article  Google Scholar 

  • Oengpepa C (2019) Giant clam production in the republic of the Marhsall Islands: a condensed guideline. SPC Special Bulletin, Noumea, New Caledonia

    Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2009) The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Glob Chang Biol 15:2123–2136. https://doi.org/10.1111/j.1365-2486.2009.01895.x

    Article  Google Scholar 

  • Przeslawski R, Byrne M, Mellin C (2015) A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob Chang Biol 21:2122–2140

    Article  PubMed  Google Scholar 

  • Remoissenet G, Wabnitz CC (2012) Postlarval capture and culture of Tridacna maxima giant clams in French Polynesia. SPC Fish Newslett 139:16–19

    Google Scholar 

  • Scanes E, Parker LM, O’Connor WA, Ross PM (2014) Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819). PLoS One 9:e93649. https://doi.org/10.1371/journal.pone.0093649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Han Y, Guo C, Zhao X, Liu S, Su W, Wang Y, Zha S, Chai X, Liu G (2017) Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa. Mar Environ Res 130:106–112. https://doi.org/10.1016/j.marenvres.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Azam K (2013) Comparative study of available spawning methods of the giant clam Tridacna squamosa [Bivalvia: Tridacnidae] in Makogai, Fiji. World J Fish Marine Sci 5:353–357

    Google Scholar 

  • Soo P, Todd PA (2014) The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae). Mar Biol 161:2699–2717. https://doi.org/10.1007/s00227-014-2545-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Southgate PC (2016) Embryonic and larval development of the giant clam Tridacna noae (Röding, 1798) (Cardiidae: Tridacninae). J Shellfish Res 35:777–783

    Article  Google Scholar 

  • Southgate PC (2017) Ingestion and digestion of micro-algae concentrates by veliger larvae of the giant clam, Tridacna noae. Aquaculture 437:443–448

    Article  Google Scholar 

  • Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST (2011) CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol 160:331–340. https://doi.org/10.1016/j.cbpa.2011.06.022

    Article  CAS  Google Scholar 

  • Styan CA, Butler AJ (2000) Fitting fertilization kinetics models for free-spawning marine invertebrates. Mar Biol 137:943–951

    Article  Google Scholar 

  • Świeżak J, Borrero-Santiago AR, Sokołowski A, Olsen AJ (2018) Impact of environmental hypercapnia on fertilization success rate and the early embryonic development of the clam Limecola balthica (Bivalvia, Tellinidae) from the southern Baltic Sea–a potential CO2 leakage case study. Mar Pollut Bull 136:201–211. https://doi.org/10.1016/j.marpolbul.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  • Toonen RJ, Nakayama T, Ogawa T, Rossiter A, Delbeek JC (2011) Growth of cultured giant clams (Tridacna spp.) in low pH, high-nutrient seawater: species-specific effects of substrate and supplemental feeding under acidification. J Mar Biol Assoc UK 92:731–740. https://doi.org/10.1017/S0025315411000762

    Article  CAS  Google Scholar 

  • Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Wabnitz CCC, Gilbert A, Remoissenet G, Payri C, Fauvelot C (2016) Drivers of density for the exploited giant clam Tridacna maxima: a meta-analysis. Fish Fish 17:567–584. https://doi.org/10.1111/faf.12127

    Article  Google Scholar 

  • Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Wabnitz CCC, Menoud M, Le Moullac G, Levy P, Gilbert A, Remoissenet G (2017) Growth, survival and reproduction of the giant clam Tridacna maxima (Röding 1798, Bivalvia) in two contrasting lagoons in French Polynesia. PLoS One 12:1–20. https://doi.org/10.1371/journal.pone.0170565

    Article  CAS  Google Scholar 

  • Van Wynsberge S, Andréfouët S, Gaertner-Mazouni N, Remoissenet G (2018) Consequences of an uncertain mass mortality regime triggered by climate variability on giant clam population management in the Pacific Ocean. Theor Popul Biol 119:37–47. https://doi.org/10.1016/j.tpb.2017.10.005

    Article  PubMed  Google Scholar 

  • Wang W, Liu G, Zhang T, Chen H, Tang L, Mao X (2016) Effects of elevated seawater pCO2 on early development of scallop Argopecten irradians (Lamarck, 1819). J Ocean Univ China 15:1073–1079. https://doi.org/10.1007/s11802-016-3146-y

    Article  CAS  Google Scholar 

  • Watson S-A (2015) Giant clams and rising CO2: light may ameliorate effects of ocean acidification on a solar-powered animal. PLoS One 10:1–18. https://doi.org/10.1371/journal.pone.0128405

    Article  CAS  Google Scholar 

  • Watson S-A, Southgate PC, Miller GM, Moorhead JA, Knauer J (2012) Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa. Molluscan Res 32:177–180

    Google Scholar 

  • Yamaguchi M (1977) Conservation and cultivation of giant clams in the tropical Pacific. Biol Conserv 11:13–20

    Article  Google Scholar 

  • Zhou Z, Liu Z, Wang L, Luo J, Li H (2019) Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature. Fish Shellfish Immunol 84:451–457. https://doi.org/10.1016/j.fsi.2018.10.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Antoine Puisay and Benoît Le Marechal, for help in collecting mature broodstock clams, and Franck Lerouvreur, Pascale Ung, and Valentine Brotherson for their invaluable aid in construction and maintenance of the aquarium facilities and in securing CO2 for use in this study. We would also like to thank Dr. Miguel Mies and another anonymous reviewer whose comments/suggestions helped improve and clarify this manuscript. This research was conducted with US Government support to EJ Armstrong under and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. A previous version of this article was published as a thesis chapter by Armstrong (2017) and is available at http://digitalassets.lib.berkeley.edu/etd/ucb/text/Armstrong_berkeley_0028E_17535.pdf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Armstrong.

Ethics declarations

Clams were collected under ordinance no. 88-184/AT of the French Polynesian Ministère de l’Économie, des Finances, du Travail et del’Emploi following all requirements laid out by the Plan de Gestion de l’Espace Maritime (PGEM) in French Polynesia and were maintained and studied in ways commensurate with all pertinent University of California guidelines. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: J. Grassle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by M. Mies and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, E.J., Dubousquet, V., Mills, S.C. et al. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar Biol 167, 8 (2020). https://doi.org/10.1007/s00227-019-3615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3615-0

Profiles

  1. Eric J. Armstrong