Skip to main content
Log in

The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

  • Review, Concept and Synthesis
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681

    Google Scholar 

  • Aberle N, Bauer B, Lewandowska A, Gaedke U, Sommer U (2012) Warming induces shifts in micro zooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar Biol (in this issue). doi:10.1007/s00227-012-1947-0

  • Adrian R, Gerten D, Huber V, Wagner C, Schmidt S (2012) Windows of change: temporal scale of analysis is decisive to detect ecosystem responses to climate change. Mar Biol (in this issue). doi:10.1007/s00227-012-1938-1

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548

    Article  CAS  Google Scholar 

  • Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Jäger C, Striebel M (2007) Water temperature and mixing depth affect timing and intensity of events during spring succession of the plankton. Oecologia 150:643–654

    Article  Google Scholar 

  • Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M (2010) Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Glob Change Biol 7:1954–1965

    Article  Google Scholar 

  • Bergmann N, Winters G, Rauch G, Eizaguirre C, Gu J, Nelle P, Fricke B, Reusch TBH (2010) Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol Ecol 19:2870–2883

    Article  Google Scholar 

  • Braune E, Richter O, Söndgerath D, Suhling F (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Glob Change Biol 14:470–482

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:771–1789

    Google Scholar 

  • Burgmer T, Hillebrand H (2011) Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120:920–933

    Article  Google Scholar 

  • Burgmer T, Hillebrand H, Pfenninger M (2007) Effects of climate-driven temperature changes on the diversity of freshwater macro invertebrates. Oecologia 151:91–103

    Article  Google Scholar 

  • Cordellier M, Pfenninger A, Streit B, Pfenninger M (2012) Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol (in this issue). doi:10.1007/s00227-012-1894-9

  • Cushing DH (1990) Plankton production and year-class strength in fish populations—an update of the match-mismatch hypothesis. Adv Mar Biol 26:249–293

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Nat Acad Sci 106:12788–12793

    Article  CAS  Google Scholar 

  • De SenerpontDomis LN, Mooij WM, Hülsmann S, van Nes EH, Scheffer M (2007) Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? Oecologia 150:682–698

    Article  Google Scholar 

  • Dieckmann ABS, Clemmesen C, St John MA, Paulsen M, Peck MY (2012) Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic. Mar Biol (in this issue). doi:10.1007/s00227-012-1955-0

  • Diehl S (2007) Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems. Am Nat 169:E171–E191

    Article  Google Scholar 

  • Durant JM, Hjermann DO, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283

    Article  Google Scholar 

  • Dziallas C, Grossart H-P (2011a) Temperature and biotic factors influence bacterial communities associated with Microcystis sp. (cyanobacteria). Environ Microbiol 13:1632–1641

    Article  Google Scholar 

  • Dziallas C, Grossart H-P (2011b) Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS One 6(9):e25569

    Article  CAS  Google Scholar 

  • Dziallas C, Grossart HP (2012) Microbial interactions with the cyanobacterium Microcystisaeruginosa and their dependence on temperature. Mar Biol (in this issue). doi:10.1007/s00227-012-1927-4

  • Dziallas C, Pinnow S, Grossart HP (2011) Detection and quantification of toxigenic and toxic cyanobacterial cells using recognition of individual gens fluorescence in situ hybridization (RING-FISH) and flow cytometry. Limnol Oceanogr Methods 9(2011):67–73

    Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  CAS  Google Scholar 

  • Edwards M, Beaugrand G, Reid PC, Rowden A, Jones MB (2002) Ocean climate anomalies and the ecology of the North Sea. Mar Ecol Progr Ser 239:1–10

    Article  Google Scholar 

  • Engel A, Händel N, Wohlers J, Lunau M, Grossart HP, Sommer U, Riebesell U (2011) Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. J Plankt Res 33:357–372

    Article  CAS  Google Scholar 

  • Finkel ZV, Sebbo J, Feist-Burkhardt S et al (2007) A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proc Nat Acad Sci 104:20416–20420

    Article  CAS  Google Scholar 

  • Flenner I, Richter O, Suhling F (2010) Latitudinal variations in development in dragonfly populations and effects of rising temperatures. Freshw Biol 55:397–410

    Article  Google Scholar 

  • Franssen SU, Gu J, Bergmann N, Winters G, Klostermeier UC, Rosenstiel P, Bornberg-Bauer E, Reusch TBH (2011) Transc-riptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Nat Acad Sci 108:19276–19281

    Article  CAS  Google Scholar 

  • Freund JA, Grüner N, Brüse S, Wiltshire KH (2012) Changes in the phytoplankton community at Helgoland, North Sea: lessons from single spot time series analyses. Mar Biol (in this issue). doi:10.1007/s00227-012-2013-7

  • Gaedke U, Ruhenstroth-Bauer M, Wiegand I, Tirok K, Aberle N, Breithaupt P, Lengfellner K, Wohlers J, Sommer U (2010) Biotic interactions may overrule direct climate effects on spring phytoplankton dynamics. Glob Change Biol 16:1122

    Article  Google Scholar 

  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    Article  Google Scholar 

  • Gerten D, Adrian R (2000) Climate driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066

    Article  Google Scholar 

  • Haslob H, Hauss H, Petereit C, Clemmesen C, Krau G, Peck MA (2012) Temperature effects on vital rates of different life stages and implications for population growth of Baltic sprat. Mar Biol (in this issue). doi:10.1007/s00227-012-1933-6

  • Hillebrand H (2011) Temperature mediates competitive exclusion and diversity in benthic microalgaeunder different N:P stoichiometry. Ecol Res 26:533–539

    Article  Google Scholar 

  • Hillebrand H, Soininen J, Snoeijs P (2010) Warming leads to higher species turnover in a coastal ecosystem. Glob Change Biol 16:1181–1193

    Article  Google Scholar 

  • Hillebrand H, Burgmer T, Biermann E (2012) Running to stand still: temperature effects on species richness. species turnover, and functional community dynamics. Mar Biol (in this issue). doi:10.1007/s00227-011-1827-z

  • Holste L, Peck MA (2006) The effects of temperature and salinity on egg production and hatching success of Baltic Acartiatonsa(Copepoda: Calanoida): a laboratory investigation. Mar Biol 148:1061–1070

    Article  Google Scholar 

  • Holste L, St John MA, Peck MA (2009) The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar Biol 156:527–540

    Article  Google Scholar 

  • Hoppe HG, Breithhaupt P, Walther K, Koppe R, Bleck S, Sommer U, Jürgens K (2008) Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom. Aquat Microbial Ecol 51:105–115

    Article  Google Scholar 

  • Huber V, Adrian R, Gerten D (2008) Phytoplankton response to climate warming modified by trophic state. Limnol Oceanogr 53:1–13

    Article  Google Scholar 

  • Huber V, Adrian R, Gerten D (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55:1769–1779

    Google Scholar 

  • Huber V, Wagner C, Gerten D, Adrian R (2012) To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169:245–256

    Article  Google Scholar 

  • Hülsmann S, Wagner A (2007) Multiple defence strategies of Daphnia galeata against predation in a weakly stratified reservoir. Hydrobiologia 594:187–199

    Article  Google Scholar 

  • Hülsmann S, Wagner A, Pitsch M, Horn W, Paul RJ, Rother A, Zeis B (2012) Effects of winter conditions on Daphnia dynamics and genetic diversity in a dimictic temperate reservoir. Freshw Biol 57:1458

    Article  Google Scholar 

  • Isla A, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14:895–906

    Article  Google Scholar 

  • Klauschies T, Bauer B, Aberle N, Sommer U, Gaedke U (2012) Climate change effects on phytoplankton depend on cell size and food web structure. Mar Biol (in this issue). doi:10.1007/s00227-012-1904-y

  • Krenek S, Petzoldt T, Berendonk TU (2012) Coping with temperature at the warm edge—patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum. PLoS One 7:e30598

    Article  CAS  Google Scholar 

  • Kupisch M, Moenickes S, Schlief J, Frassl M, Richter O (2012). Temperature dependent consumer-resource dynamics: a coupled structured model for Gammaruspulex (L.) and leaf litter. Ecol Model. doi:10.1016/j.ecolmodel.2012.07.037

  • Lewandowska A, Breithaupt P, Hillebrand H, Hoppe HG, Jürgens K, Sommer U (2012) Responses of primary productivity to increased temperature and phytoplankton diversity. J Sea Res. doi:10.1016/j.seares.2011.10.003

  • Lohmann G, Wiltshire KH (2012) Winter atmospheric circulation signature for the timing of the spring bloom of diatoms in the North Sea. Mar Biol (in this issue). doi:10.1007/s00227-012-1993-7

  • Mehner T, Busch S, Clemmesen C, Helland IP, Hölker F, Ohlberger J, Peck MA (2012) Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat. Mar Biol (in this issue). doi:10.1007/s00227-012-1922-9

  • Moenickes S, Frassl M, Schlief J, Mutz M, Suhling F, Richter O (2012) Temporal patterns of populations in a warming world: a modelling framework. Mar Biol (in this issue). doi:10.1007/s00227-012-1996-4

  • Müren U, Berglund J, Samuelsson K, Andersson A (2005) Potential effects of elevated sea-water temperature on pelagic food webs. Hydrobiologia 545:153–166

    Article  Google Scholar 

  • Nomdedeu MM, Willen C, Schieffer A, Arndt H (2012) Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web. Mar Biol (in this issue). doi:10.1007/s00227-012-1966-x

  • Norf H, Weitere M (2010) Resource quantity and seasonal background alter warming effects on communities of biofilm ciliates. FEMS Microb Ecol 74:361–370

    Article  CAS  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Paul RJ, Mertenskötter A, Pinkhaus O, Pirow R, Gigengack U, Buchen I, Koch M, Horn W, Zeis B (2012) Seasonal and interannual changes in water temperature affect the genetic structure of a Daphnia assemblage (D. longispina complex) through genotype-specific thermal tolerances. Limnol Oceanogr 57:619–633

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A, Livingstone DM (2007a) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob Change Biol 13:1898–1909

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A, Ollinger D (2007b) Turbulent mixing and phytoplankton spring bloom development in a deep lake. Limnol Oceanogr 52:286–298

    Article  Google Scholar 

  • Petereit C, Haslob H, Kraus G, Clemmesen C (2008) The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar Biol 154:295–306

    Article  Google Scholar 

  • Pfenninger M, Salinger M, Haun T, Feldmeyer B (2011) Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail Radix balthica (Pulmonata, Basommatophora). BMC Evol Biol 11:135

    Article  Google Scholar 

  • Pinkhaus O, Schwerin S, Pirow R, Zeis B, Buchen I, Gigengack U, Koch M, Horn W, Paul RJ (2007) Temporal environmental change, clonal physiology and the genetic structure of a Daphnia assemblage (D. galeata-hyalina hybrid species complex). Freshw Biol 52:1537–1554

    Article  CAS  Google Scholar 

  • Richter O, Suhling F, Müller O, Kern D (2008) A model for predicting the emergence of dragonflies in a changing climate. Freshw Biol 53:1868–1880

    Article  Google Scholar 

  • Rolinski S, Horn H, Petzoldt T, Paul L (2007) Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153:997–1008

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Russell BD, Connell SD (2012) Origins and consequences of global and local stressors: incorporating climatic and non-climatic phenomena that buffer or accelerate ecological change. Mar Biol (in this issue). doi:10.1007/s00227-011-1863-8

  • Schalau K, RinkeK StraileD, Peeters F (2008) Temperature is the key factor explaining interannual variability of Daphnia development in spring—a modelling study. Oecologia 157:531–543

    Article  Google Scholar 

  • Schlief J, Mutz M (2009) Effect of sudden flow reduction on the decomposition of alder leaves (Alnusglutinosa[L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624:205–217

    Article  CAS  Google Scholar 

  • Sebastian P, Stibor H, Berger SA, Diehl S (2012) Effects of water temperature and mixed layer depth on zooplankton body size. Mar Biol (in this issue). doi:10.1007/s00227-012-1931-8

  • Seebens H, Einsle U, Straile D (2009) Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology. Glob Change Biol 15:1394–1404

    Article  Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208

    Article  Google Scholar 

  • Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162

    Article  Google Scholar 

  • Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner U, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667

    Article  Google Scholar 

  • Sommer U, Aberle N, Lengfellner K, Lewandowska A (2012) The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Mar Biol (in this issue). doi:10.1007/s00227-012-1897-6

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  CAS  Google Scholar 

  • Straile D, Kerimoglu O, Peeters F, Jochimsen MC, Kümmerlin R, Rinke K, Rothhaupt KO (2010) Effects of a half a millennium winter on a deep lake—a shape of things to come? Glob Change Biol 10:2844–2856

    Article  Google Scholar 

  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315:604–642

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith M, Smithers RJ, Winfield IJ, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313

    Article  Google Scholar 

  • Tirok K, Gaedke U (2006) Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear-water phase in a large, deep lake. J Plankton Res 28:361–373

    Article  Google Scholar 

  • Tirok K, Gaedke U (2007a) a) Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat Microb Ecol 49:87–100

    Article  Google Scholar 

  • Tirok K, Gaedke U (2007b) The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change—long-term observations and models. Oecologia 150:625–642

    Article  Google Scholar 

  • Viergutz C, Kathol M, Norf H, Arndt H, Weitere M (2007) Control of microbial communities by the macrofauna: a sensitive interaction in the context of extreme summer temperatures? Oecologia 151:115–124

    Article  Google Scholar 

  • Viergutz C, Linn C, Weitere M (2012) Intra- and interannual variability surpasses direct temperature effects on the clearance rates of the invasive clam Corbiculafluminea. Mar Biol (in this issue). doi:10.1007/s00227-012-1902-0

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond Ser B 265:1867–1870

    Article  Google Scholar 

  • Wagner C, Adrian R (2009a) Exploring lake ecosystems: hierarchy responses to long-term change? Glob Change Biol 15:1104–1115

    Article  Google Scholar 

  • Wagner C, Adrian R (2009b) Cyanobacteria dominance—quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468

    Article  Google Scholar 

  • Wagner C, Adrian R (2011) Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshw Biol 56:1949–1961

    Article  Google Scholar 

  • Wagner A, Benndorf J (2007) Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151:351–364

    Article  Google Scholar 

  • Wagner A, Hülsmann S, Paul L, Paul RJ, Petzoldt T, Sachse R, Schiller T, Zeis B, Benndorf J, Berendonk TU (2012a) A phenomenological approach shows a high coherence of warming patterns in dimictic aquatic systems across latitude. Mar Biol (in this issue). doi:10.1007/s00227-012-1934-5

  • Wagner A, Hülsmann S, Horn W, Schiller T, Schulze T, Volkmann S, Benndorf J (2012b) Climate warming stabilizes a planktonic keystone herbivore by changes in trophic match. Freshw Biol. doi:10.1111/j.1365-2427.2012.02809.x

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:89–395

    Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic oscillation. Limnol Oceanogr 44:1788–1792

    Google Scholar 

  • Wehenmeyer GA (2001) Warmer winters: are planktonic populations in Sweden’s largest lake affected? Ambio 30:565–571

    Google Scholar 

  • Weitere M, Dahlmann J, Viergutz C, Arndt H (2008) Differential grazer-mediated effects of high summer temperatures on pico- and nanoplankton communities. Limnol Oceanogr 53:477–486

    Article  Google Scholar 

  • Weitere M, Vohmann A, Schulz N, Linn C, Dietrich D, Arndt H (2009) Linking environmental warming to the fitness of the invasive clam Corbiculafluminea. Glob Change Biol 15:2838–2851

    Article  Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484

    Article  Google Scholar 

  • Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgoland Mar Res 58:269–273

    Article  Google Scholar 

  • Wiltshire KH, Malzahn AM, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Article  Google Scholar 

  • Wiltshire KH, Kraberg A, Bartsch I, Boersma M, Franke HD, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland Roads: 45 years of change. Estuaries Coasts 33:295–310

    Article  CAS  Google Scholar 

  • Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in a lake ecosystem. Ecology 85:2100–2106

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc Lond B 276:427–435

    Article  Google Scholar 

  • Winder M, Berger SA, Lewandowska A, Aberle N, Lengfellner K, Sommer U, Diehl S (2012) Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Mar Biol (in this issue). doi:10.1007/s00227-012-1964-z

  • Winters G, Nelle P, Fricke B, Rauch G, Reusch TBH (2011) Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Mar Ecol Progr Ser 435:83–95

    Article  Google Scholar 

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Nat Acad Sci 106:7067–7072

    Article  CAS  Google Scholar 

  • Wohlers-Zöllner J, Breithaupt P, Walther K, Jürgens K, Riebesell U (2011) Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal–bacterial community. Limnol Oceanogr 56:599–610

    Article  Google Scholar 

  • Wohlers-Zöllner J, Biermann A, Engel A, Dörge P. Lewandowska AM, ScheibnerMv, Riebesell U (2012) Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments. Mar Biol (in this issue). doi:10.1007/s00227-012-1958-x

  • Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Change Biol 17:1681–1694

    Article  Google Scholar 

  • Zeis B, Horn W, Gigengack U, Koch M, Paul RJ (2010) A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshwat Biol 55:2296–2304

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding of the priority program AQUASHIFT by the DFG. The content of the manuscript has been checked by all co-authors of this special issue and all PIs of the AQUASHIFT projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, U., Adrian, R., Bauer, B. et al. The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project. Mar Biol 159, 2367–2377 (2012). https://doi.org/10.1007/s00227-012-2085-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2085-4

Keywords

Navigation