Skip to main content

Advertisement

Log in

Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  CAS  Google Scholar 

  • Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287

    Article  CAS  Google Scholar 

  • Bellerby RGJ, Schulz KG, Riebesell U, Neill C, Nondal G, Johannessen T, Brown KR (2008) Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences 5:1517–1527

    Article  CAS  Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J-L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Glob Biogeochem Cycles 15:81–99

    Article  CAS  Google Scholar 

  • Boyd PW, Doney SC (2002) Modeling regional responses by marine pelagic ecosystems to global climate change. Geophys Res Lett 29:1806

    Article  Google Scholar 

  • Breithaupt P (2009) The impact of climate change on phytoplankton-bacterioplankton interactions. Dissertation, Christian-Albrechts-University, Kiel, Germany

  • Brock TD (1981) Calculating solar radiation for ecological models. Ecol Model 14:1–19

    Article  Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymers. Nature 391:568–572

    Article  CAS  Google Scholar 

  • Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11

    Article  Google Scholar 

  • Copin MG, Avril B (1993) Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res I 40:1963–1972

    Article  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  CAS  Google Scholar 

  • Engel A (2004) Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep-Sea Res I 51:83–92

    Article  CAS  Google Scholar 

  • Engel A, Goldthwait S, Passow U, Alldredge AL (2002) Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnol Oceanogr 47:753–761

    Article  CAS  Google Scholar 

  • Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–932

    Article  CAS  Google Scholar 

  • Engel A, Händel N, Wohlers J, Lunau M, Grossart HP, Sommer U, Riebesell U (2011) Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. J Plankt Res 33:357–372

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2009) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankt Res 32:119–137

    Article  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66:109–120

    Article  Google Scholar 

  • Gargas E (1975) A manual for phytoplankton primary production studies in the Baltic. Baltic Mar Biol 2:1–88

    Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley VCH, Weinheim, pp 159–228

    Chapter  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    Article  CAS  Google Scholar 

  • Kawasaki N, Benner R (2006) Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr 51:2170–2180

    Article  CAS  Google Scholar 

  • Kim JM, Lee K, Shin K, Yang EJ, Engel A, Karl DM, Kim HC (2011) Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and Warm Ocean conditions. Geophys Res Lett 38:L08612

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett. doi:10.1111/j.1461-0248.2010.01518x

  • Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic matter. Annu Rev Mar Sci 3:567–599

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–1998. Geophys Res Lett 32:L02604

    Article  Google Scholar 

  • Lewandowska AM, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar Ecol Prog Ser 405:101–111

    Article  CAS  Google Scholar 

  • Lewandowska AM, Breithaupt P, Hillebrand H, Hoppe HG, Jürgens K, Sommer U (2011) Responses of primary productivity to increased temperature and phytoplankton diversity. J Sea Res. doi:10.1016/j.seares.2011.10.003

  • López-Urrutia A, San Martin E, Harris RP, Irigoien X (2006) Scaling the metabolic balance of the oceans. Proc Nat Acad Sci 103:8739–8744

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin MMD, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Morán XAG, Sebastián M, Pedrós-Alió C, Estrada M (2006) Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol Oceanogr 51:1791–1800

    Article  Google Scholar 

  • Morán XAG, López-Urrutia A, Calvo-Díaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol 16:1137–1144

    Article  Google Scholar 

  • Müren U, Berglund J, Samuelsson K, Andersson A (2005) Potential effects of elevated sea-water temperature on pelagic food webs. Hydrobiol 545:153–166

    Article  Google Scholar 

  • Myklestad S, Skånøy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar Chem 56:279–286

    Article  CAS  Google Scholar 

  • Norrman B, Zweifel UL, Hopkinson CS, Fry B (1995) Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol Oceanogr 40:898–907

    Article  CAS  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178. doi:10.1371/journal.pbio.1000178

    Article  Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920

    Article  CAS  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Passow U, Alldredge AL (1995a) A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol Oceanogr 40:1326–1335

    Article  CAS  Google Scholar 

  • Passow U, Alldredge AL (1995b) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep-Sea Res II 42:99–109

    Article  CAS  Google Scholar 

  • Qian J, Mopper K (1996) Automated high-performance, high-temperature combustion total organic carbon analyzer. Analyt Chem 68:3090–3097

    Article  CAS  Google Scholar 

  • Redfield AC, Ketchum BM, Richards FA (1963) The influence of organism on the composition of sea-water. In: Hill MN (ed) The sea. Wiley, New York, pp 26–77

    Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–549

    Article  CAS  Google Scholar 

  • Riebesell U, Körtzinger A, Oschlies A (2009) Sensitivities of marine carbon fluxes to ocean change. Proc Nat Acad Sci 106:20602–20609

    Article  CAS  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic warming. Nature 393:245–249

    Article  CAS  Google Scholar 

  • Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Glob Biogeochem Cycles 18:GB3003

  • Schartau M, Engel A, Schröter J, Thoms S, Völker C, Wolf-Gladrow D (2007) Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences 4:433–454

    Article  CAS  Google Scholar 

  • Sharp JH (1974) Improved analysis for particulate organic carbon and nitrogen from seawater. Limnol Oceanogr 19:984–989

    Article  CAS  Google Scholar 

  • Sharples J, Ross ON, Scott BE, Greenstreet SPR, Fraser H (2006) Inter-annual variability in the timing of stratification and the spring bloom in the North-western North Sea. Cont Shelf Res 26:733–751

    Article  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  CAS  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213

    Article  CAS  Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208

    Article  Google Scholar 

  • Sommer U, Lewandowska A (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162

    Article  Google Scholar 

  • Sommer U, Aberle N, Engel A, Hansen T, Lengfellner K, Sandow M, Wohlers J, Zöllner E, Riebesell U (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667

    Article  Google Scholar 

  • Steemann Nielsen E (1952) The use of radioactive carbon (14C) for measuring production in the sea. J Cons Int Explor Mer 18:117–140

    Google Scholar 

  • Stoderegger K, Herndl GJ (1998) Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnol Oceanogr 43:877–884

    Article  CAS  Google Scholar 

  • Thingstad TF, Hagström Å, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404

    Article  CAS  Google Scholar 

  • Thornton DCO, Thake B (1998) Effect of temperature on the aggregation of Skeletonema costatum (Bacillariophyceae) and the implication for carbon flux in coastal waters. Mar Ecol Prog Ser 174:223–231

    Article  Google Scholar 

  • Tilzer MM, Dubinsky Z (1986) Effects of temperature and day length on the mass balance of Antarctic phytoplankton. Polar Biol 7:35–42

    Article  Google Scholar 

  • Van den Meersche K, Middelburg JJ, Soetaert K, van Rijswijk P, Boschker HTS (2004) Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: modeling a 13Ctracer experiment. Limnol Oceanogr 49:862–878

    Article  Google Scholar 

  • Verity PG (1981) Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus cleve. I. Photosynthesis and cellular composition. J Exp Mar Biol Ecol 55:79–91

    Article  CAS  Google Scholar 

  • Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273

    Article  Google Scholar 

  • Wohlers J (2009) The impact of climate change on phytoplankton-bacterioplankton interactions. Dissertation, Christian-Albrechts-University, Kiel, Germany

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Nat Acad Sci 106:7067–7072

    Article  CAS  Google Scholar 

  • Wohlers-Zöllner J, Breithaupt P, Walther K, Jürgens K, Riebesell U (2011) Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal–bacterial community. Limnol Oceanogr 56:599–610

    Article  Google Scholar 

  • Wolfstein K, Brouwer JFC, Stal LJ (2002) Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances. Mar Ecol Prog Ser 245:21–31

    Article  CAS  Google Scholar 

  • Zöllner E, Hoppe HG, Sommer U, Juergens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54:262–275

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Ludwig, N. Händel and P. Fritsche for their technical assistance in sample preparation and analysis. All members of the Kiel AQUASHIFT-team are appreciated for their help during the experiments. We are particularly grateful to E. Zöllner and the anonymous reviewers for their comments on an earlier version of this manuscript. This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant no. RI 598/2-3 to U. R. and A. E. and by the Helmholtz Association (contract no. HZ-NG-102 to A. E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Wohlers-Zöllner.

Additional information

Communicated by M. Winder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlers-Zöllner, J., Biermann, A., Engel, A. et al. Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments. Mar Biol 159, 2503–2518 (2012). https://doi.org/10.1007/s00227-012-1958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1958-x

Keywords

Navigation