Skip to main content

Advertisement

Log in

Contrasting population structures in two sympatric fishes in the Baltic Sea basin

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Detailed multispecies studies on the patterns of genetic variability and differentiation in marine environments are still rare. Using mitochondrial and nuclear genetic markers, we compared genetic variability and population structuring of threespine (Gasterosteus aculeatus) and ninespine (Pungitius pungitius) sticklebacks from the same eleven marine and six freshwater locations within the Baltic Sea basin. Analyses of both marker types revealed a significantly lower degree of genetic structuring in both marine and freshwater populations of threespine than those ninespine sticklebacks. Isolation-by-distance (IBD) was detected across the marine populations in both species, suggesting spatially limited gene flow. However, the levels of genetic diversity and differentiation across the localities were uncorrelated between the two species in both marine and freshwater environments. Accordingly, estimates of effective population sizes were larger and migration rates were higher for three- than for ninespine sticklebacks. Hence, ninespine stickleback populations from the Baltic Sea basin appear to be subject to stronger genetic drift than sympatric threespine sticklebacks, and the proximate reason for this difference is likely to be found from autecological differences between the two species. In accordance with the earlier studies, genetic variability was higher and the degree of genetic differentiation was lower in marine than in freshwater populations in both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldenhoven JT, Miller MA, Corneli PS, Shapiro MD (2010) Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits. Mol Ecol 19:4061–4076

    Article  CAS  Google Scholar 

  • Allendorf F, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Oxford

    Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323

    Article  Google Scholar 

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Avise JC (1993) Molecular markers, natural history and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Cambridge University Press, Cambridge

    Google Scholar 

  • Avise JC, Reeb CA, Saunders NC (1987) Geographic population structure and species differences in mitochondrial DNA of mouthbrooding marine catfish (Ariidae) and demersal spawning toadfishes (Batrachoididae). Evolution 41:991–1002

    Article  Google Scholar 

  • Bănărescu PM, Paepke HJ (2001) The Freshwater Fishes of Europe. Vol. 5/III. AULA-Verlag

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  CAS  Google Scholar 

  • Bell MA, Stewart JD, Park PJ (2009) The world’s oldest fossil threespine stickleback fish. Copeia 2009:256–265

    Article  Google Scholar 

  • Berner D, Grandchamp A-C, Hendry AP (2009) Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63:1740–1753

    Article  Google Scholar 

  • Bohonack BA (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  Google Scholar 

  • Brede EG, Beebee TJC (2004) Contrasting population structures in two sympatric anurans: implications for species conservation. Heredity 92:110–117

    Article  CAS  Google Scholar 

  • Brown AHD (1978) Isozymes, plant population genetic structure and genetic conservation. Theor Appl Genet 52:145–157

    Article  Google Scholar 

  • Cano JM, Shikano T, Kuparinen A, Merilä J (2008a) Genetic differentiation, effective population size and gene flow in marine fishes: implications for stock management. J Integr Field Sci 5:1–10

    Google Scholar 

  • Cano JM, Mäkinen HS, Merilä J (2008b) Genetic evidence for male-biased dispersal in the three-spined stickleback (Gasterosteus aculeatus). Mol Ecol 17:3234–3242

    Article  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  Google Scholar 

  • Conover DO, Clarke LM, Munch SB, Wagner GN (2006) Spatial and temporal scales of adaptive divergence in marine fishes and the implication for conservation. J Fish Biol 69(Suppl. C):21–47

    Article  Google Scholar 

  • Copp GH, Kovác V (2003) Sympatry between threespine Gasterosteus aculeatus and ninespine Pungitius pungitius sticklebacks in English lowland streams. Ann Zool Fennici 40:341–355

    Google Scholar 

  • Cowen RK, Chiarella LA, Gomez CJ, Bell MA (1991) Offshore distribution, size, age, and lateral plate variation of ate larval/early juvenile sticklebacks (Gasterosteus) of the Atlantic coast of New Jersey and New York. Can J Fish Aqua Sci 48:1679–1684

    Article  Google Scholar 

  • Craig D, FitzGerald GJ (1982) Reproductive tactics of four sympatric sticklebacks (Gasterosteidae). Environ Biol Fish 7:369–375

    Article  Google Scholar 

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Res 10:556–557

    Article  Google Scholar 

  • DeFaveri J, Shikano T, Shimada Y, Goto A, Merilä J (2011) Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus). Evolution 65:1800–1807

    Article  Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1. Available from http://www.geneious.com

  • Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite evolution: directionality or bias? Nat Genet 11:360–362

    Article  CAS  Google Scholar 

  • Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320

    Article  CAS  Google Scholar 

  • Estoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In: Carvlho GR (ed) Advances in molecular ecology. NATO science series. IOS Press, Amsterdam, pp 55–86

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Fauvelot C, Planes ES (2002) Understanding origins of present-day genetic structure in marine fish:biologically or historically driven patterns? Mar Biol 141:773–788

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  Google Scholar 

  • Frankham R (1995) Effective population size adult population size ratios in wildlife—a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a computer program to estimate and test gene diversities and fixation indicies (version 2.9.3)

  • Gyllensten U (1985) The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species. J Fish Biol 26:691–699

    Article  Google Scholar 

  • Haglund TR, Buth DG, Lawson R (1992) Allozyme variation and phylogenetic relationships of Asian, North American, and European populations of the threespine stickleback, Gasterosteus aculeatus. Copeia 1992:432–443

    Article  Google Scholar 

  • Hart PJB (2003) Habitat use and feeding behaviour in two closely related fish species, the three-spined and nine-spined stickleback: an experimental analysis. J Anim Ecol 72:777–783

    Article  Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40:291–310

    Article  Google Scholar 

  • Herczeg G, Gonda A, Merilä J (2009) Evolution of gigantism in ninespine sticklebacks. Evolution 63:3190–3200

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913

    Article  CAS  Google Scholar 

  • Hewitt G (2004) Genetic consequences of climatic oscillations in the quaternary. Phil Trans R Soc Lond Ser B-Biol Sci 359:183–195

    Article  CAS  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 2:e1000862

    Article  Google Scholar 

  • Johannesson K, André C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029

    Article  CAS  Google Scholar 

  • Johannesson K, Smolarz K, Grahn M, André C (2011) The future of Baltic Sea populations: local extinction or evolutionary rescue? Ambio 40:179–190

    Article  CAS  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  Google Scholar 

  • Jurvelius J, Leinikki J, Mamylovc V, Pushkin S (1996) Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): a simultaneous up- and down-looking echo-sounding study. Fish Res 27:227–241

    Article  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kerdelhué C, Magnoux E, Lieutier F, Roques A, Rousselet J (2006) Comparative population genetic study of two oligophagous insects associated with the same hosts. Heredity 97:38–45

    Article  Google Scholar 

  • Ketele AGL, Verheyen RF (1985) Competition for space between the three-spined stickleback, Gasterosteus aculeatus L.f. leiura and the nine-spined stickleback, Pungitius pungitius (L.). Behaviour 93:127–138

    Article  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1995) Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140:1421–1430

    CAS  Google Scholar 

  • Kyle CJ, Boulding EG (2000) Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol 137:835–845

    Article  CAS  Google Scholar 

  • Langella O (2002) Population 1.2.28. Logiciel de gènètique des populations. Laboratoire Populations, gènètique et èvolution, CNRS UPR9034, Gif-sur-Yvette

  • Largiader CR, Fries V, Kobler B, Bakker TCM (1999) Isolation and characterization of microsatellite loci from the three-spined stickleback (Gasterosteus aculeatus L.). Mol Ecol 8:342–344

    CAS  Google Scholar 

  • Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17

    CAS  Google Scholar 

  • Leis JM, Van Herwerden L, Patterson HM (2011) Estimating connectivity in marine fish populations: what works best? Annu Rev Oceanog Mar Biol 49:193–234

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5. A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—evidence for multiple glacial refugia. Mol Phylogenet Evol 46:167–182

    Article  Google Scholar 

  • Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534

    Article  Google Scholar 

  • Mäkinen HS, Cano JM, Merilä J (2008) Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations. Mol Ecol 17:3565–3582

    Article  Google Scholar 

  • Manly BFJ (1991) Randomization and monte carlo methods in biology. Chapman & Hall, New York

    Google Scholar 

  • Mattern MY (2007) Phylogeny, systematic, and taxonomy of stickleback. In: Östlund-Nilsson S, Mayer I, Huntingford FA (eds) Biology of the three-spined stickleback. CRC Press, Boca Raton, pp 6–8

    Google Scholar 

  • McCusker MR, Bentzen P (2010) Positive relationships between genetic diversity and abundance in fishes. Mol Ecol 19:4852–4862

    Article  Google Scholar 

  • Mitton JB (1997) Selection in natural populations. Oxford University Press, Oxford

    Google Scholar 

  • Mitton JB, Lewis WM Jr (1989) Relationships between genetic variability and life-history features of bony fishes. Evolution 43:1712–1723

    Article  Google Scholar 

  • Nelson JS (1968) Salinity tolerance of brook sticklebacks, Culaea inconstans, freshwater ninespine sticklebacks, Pungitius pungitius, and freshwater fourspine sticklebacks, Apeltes quadracus. Can J Zool 46:663–667

    Article  Google Scholar 

  • Nielsen SB, Gallagher K, Leighton C, Balling N, Svenningsen L, Jacobsen BH, Thomsen E, Nielsen OB, Heilmann-Clausen C, Egholm DL, Summerfield MA, Clausen OR, Piotrowski JA, Thorsen MR, Huuse M, Abrahamsen N, King C, Lykke-Andersen H (2009) The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis. J Geodyn 47:72–95

    Article  Google Scholar 

  • Olsson J, Mo K, Florin A-B, Aho T, Ryman N (2011) Genetic population structure of perch Perca fluviatilis along the Swedish coast of the Baltic Sea. J Fish Biol 79:122–137

    Article  CAS  Google Scholar 

  • Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: Evidence for recent migrations. Evolution 48:608–622

    Article  Google Scholar 

  • Ouborg NJ, Piquot Y, VanGroenedael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  • Ovajeer E, Pihu E, Saat T (2000) Fishes of Estonia. Estonian Marine Institute, Tallin

    Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM (2001) The genetic architecture of divergence between threespine stickleback species. Nature 414:901–905

    Article  CAS  Google Scholar 

  • Peltonen H, Vinni M, Lappalainen A, Pönni J (2004) Spatial feeding patterns of herring (Clupea harengus L.), sprat (Sprattus sprattus L.), and the three-spined stickleback (Gasterosteus aculeatus L.) in the Gulf of Finland, B. Baltic Sea. ICES J Mar Sci 61:966–971

    Article  Google Scholar 

  • Quinn TP, Light JT (1989) Occurrence of threespine sticklebacks (Gasterosteus aculeatus) in the open North Pacific Ocean: migration or drift? Can J Zool 67:2850–2852

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reusch TBH, Wegner KM, Kalbe M (2001) Rapid genetic divergence in postglacial populations of threespine stickleback (Gasterosteus aculeatus): the role of habitat type, drainage and geographical proximity. Mol Ecol 10:2435–2445

    Article  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2:229–232

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org

  • Schnabel A, Hamrick JL (1990) Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Syst Bot 15:240–251

    Article  Google Scholar 

  • Shikano T, Shimada Y, Herczeg G, Merilä J (2010a) History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (Pungitius pungitius) populations. Mol Ecol 19:1147–1161

    Article  Google Scholar 

  • Shikano T, Ramadevi J, Merilä J (2010b) Identification of local- and habitat-dependent selection: scanning functionally important genes in nine-spined sticklebacks (Pungitius pungitius). Mol Biol Evol 27:2775–2789

    Article  CAS  Google Scholar 

  • Shimada Y, Shikano T, Merilä J (2011) A high incidence of selection on physiologically important genes in the three-spined stickleback Gasterosteus aculeatus. Mol Biol Evol 28:181–193

    Article  CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  Google Scholar 

  • Taggart JB, Hynes RA, Prodöuhl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965

    Article  CAS  Google Scholar 

  • Takahashi H, Goto A (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol Phylogenet Evol 21:135–155

    Article  CAS  Google Scholar 

  • Taylor EB, McPhail JD (1999) Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): insights from mitochondrial DNA. Biol J Lin Soc 66:271–291

    Article  Google Scholar 

  • Teacher AGF, Shikano T, Karjalainen ME, Merilä J (2011) Phylogeography and genetic structuring of European nine-spined sticklebacks (Pungitius pungitius)—mitochondrial DNA evidence. PLoS ONE 6:e19476

    Article  CAS  Google Scholar 

  • Teske PR, Papadopoulos I, Mmonwa KL, Matumba TG, McQuiad, CD, Barker NP, Beheregaray LB (2011) Climate-driven genetic divergence of limpets with different life histories across a southeast African marine biogeographic disjunction: different processes, same outcome. Mol Ecol 20:5025–5041

    Article  Google Scholar 

  • Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Article  Google Scholar 

  • Ward RD, Skibinsky DO, Woodwark M (1992) Protein heterozygosity, protein structure and taxonomic differentiation. Evol Biol 26:73–159

    Article  CAS  Google Scholar 

  • Ward RD, Woodwark M, Skibinsky DO (1994) A comparison of genetic diversity in marine, freshwater and anadromous fishes. J Fish Biol 44:213–232

    Article  Google Scholar 

  • Wootton RJ (1976) The biology of the sticklebacks. Academic Press, London

    Google Scholar 

  • Wootton RJ (1984) A functional biology of sticklebacks. University of California Press, Berkeley

    Book  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  Google Scholar 

  • Yue GH, David L, Orban L (2007) Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129:329–331

    Article  CAS  Google Scholar 

  • Zeller M, Reusch TBH, Lampert W (2006) A comparative population genetic study on calanoid freshwater copepods: Investigation of isolation-by-distance in two eudiaptomus species with a different potential for dispersal. Limnol Oceanogr 51:117–124

    Article  Google Scholar 

  • Zink R, Remsen V (1986) Evolutionary processes and patterns of geographic variation in birds. In: Johnston RF (ed) Current ornithology, vol 4. Plenum Press, New York, pp 1–69

    Google Scholar 

Download references

Acknowledgments

We thank Anders Adil, Janis Birzaks, Folmer Bokma, Christer Brönmark, Pär Byström, Gabor Herczeg, Agnieszka Kijewska, Lotta Kvarnemo, Tuomas Leinonen, Hannu Mäkinen, Jouko Pokela, Jarmo Saarikivi, Kaisa Välimäki and Helmut Winkler for their help in obtaining the samples, and Kari Merilä for drawing the Fig. 1. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP/2007–2013) under grant agreement no. 217246 made with BONUS, the joint Baltic Sea research and development programme (JM), from LUOVA Graduate School (JD), University of Putra Malaysia (NA), Academy of Finland (grant no. 134728; JM), Center of Excellence in Evolutionary Genetics and Physiology (grant no. 129662; JM) and the Finnish Cultural Foundation (TS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacquelin DeFaveri.

Additional information

Communicated by T. Reusch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeFaveri, J., Shikano, T., Ghani, N.I.A. et al. Contrasting population structures in two sympatric fishes in the Baltic Sea basin. Mar Biol 159, 1659–1672 (2012). https://doi.org/10.1007/s00227-012-1951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1951-4

Keywords

Navigation