Skip to main content
Log in

Locomotion versus spawning: escape responses during and after spawning in the scallop Argopecten purpuratus

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The energetic cost of spawning and the endogenous factors that modulate spawning could modify escape response performance, leading to a conflict between the requirements of two fundamental components of fitness: reproduction and survival. We examined whether spawning changed force production during escape responses by the functionally hermaphroditic scallop, Argopecten purpuratus, and whether the response of smooth (tonic) and striated (phasic) muscles differed. Force production during escape responses by mature scallops was compared before induction of spawning, during spawning and after completion of spawning. Maximum tonic force and the area under the force curve (total force recorded) were diminished during gamete release, whereas phasic force production (maximum and mean force) increased after spawning was completed. The number and frequency of phasic contractions did not change during the spawning process, suggesting that spawning did not limit fuel availability for phasic contractions. The decrease in tonic force during spawning and the increased phasic force production after spawning may reflect changes in monoamine levels during gamete release. Whereas the spawning process modified force production during escape responses, the changes would, if anything, enhance escape performance during an initial encounter between a scallop and a predatory sea star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azzu V, Yadin D, Patel H, Fraternali F, Chantler PD, Molloy JE (2006) Calcium regulates scallop muscle by changing myosin flexibility. Eur Biophys J 35:302–312. doi:https://doi.org/10.1007/s00249-005-0036-4

    Article  CAS  Google Scholar 

  • Bagshaw CR (1988) Where’s the catch? J Muscle Res Cell Motil 9:195–196. doi:https://doi.org/10.1007/BF01773741

    Article  CAS  Google Scholar 

  • Bailey DM, Peck LS, Bock C, Pörtner HO (2003) High-energy phosphate metabolism during exercise and recovery in temperate and Antarctic scallops—an in vivo 31P-NMR study. Physiol Biochem Zool 76:622–633. doi:https://doi.org/10.1086/376920

    Article  CAS  Google Scholar 

  • Barbeau MA, Scheibling RE (1994) Behavioral mechanisms of prey size selection by sea stars (Asterias vulgaris Verrill) and Crabs (Cancer irroratus Say) preying on juvenile sea scallops (Placopecten magellanicus (Gmelin)). J Exp Mar Biol Ecol 180:103–136. doi:https://doi.org/10.1016/0022-0981(94)90082-5

    Article  Google Scholar 

  • Bloomquist E, Curtis BA (1975) Net calcium fluxes in anterior byssus retractor muscle with phasic and catch contraction. Am J Physiol 229:1244–1248

    CAS  PubMed  Google Scholar 

  • Braley RD (1985) Serotonin-induced spawning in giant clams (Bivalvia: Tridacnidae). Aquaculture 47:321–325. doi:https://doi.org/10.1016/0044-8486(85)90217-0

    Article  CAS  Google Scholar 

  • Brokordt KB, Guderley H (2004a) Energetic requirements during gonad maturation and spawning in scallops: sex differences in Chlamys islandica. J Shell Res 23:25–32

    Google Scholar 

  • Brokordt KB, Guderley H (2004b) Binding of glycolytic enzymes in scallop adductor muscle is altered by reproductive status. Mar Ecol Prog Ser 268:141–149. doi:https://doi.org/10.3354/meps268141

    Article  CAS  Google Scholar 

  • Brokordt KB, Himmelman JH, Guderley H (2000a) Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776. J Exp Mar Biol Ecol 251:205–225. doi:https://doi.org/10.1016/S0022-0981(00)00215-X

    Article  CAS  Google Scholar 

  • Brokordt KB, Himmelman JH, Nusetti O, Guderley H (2000b) Reproductive investment reduces recuperation from escape responses in the tropical scallop Euvola ziczac. Mar Biol (Berl) 137:857–865. doi:https://doi.org/10.1007/s002270000415

    Article  CAS  Google Scholar 

  • Brokordt KB, Fernández M, Gaymer C (2006) Domestication reduces the capacity to escape from predators. J Exp Mar Biol Ecol 329:11–19. doi:https://doi.org/10.1016/j.jembe.2005.08.007

    Article  Google Scholar 

  • Chantler PD (2006) Scallop adductor muscles: structure and function. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier Science Publishers, Amsterdam, pp 229–316

    Chapter  Google Scholar 

  • Chih PC, Ellington WS (1983) Energy metabolism during contractile activity and environmental hypoxia in the phasic adductor muscle of the bay scallop Argopecten irradians concentricus. Physiol Zool 56:623–631

    Article  CAS  Google Scholar 

  • Chih PC, Ellington WS (1986) Control of glycolysis during contractile activity in the phasic adductor muscle of the bay scallop, Argopecten irradians concentricus. I. Identification of potential sites of regulation and a consideration of the control of octopine dehydrogenase activity. Physiol Zool 59:563–573

    Article  CAS  Google Scholar 

  • de Zwaan A, Thompson RJ, Livingstone DR (1980) Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop Placopecten magellanicus. II. Biochemistry. J Comp Physiol 137:105–114

    Article  Google Scholar 

  • Epp J, Bricelj M, Malouf R (1988) Seasonal partitioning and utilization of energy reserves in two age classes of the bay scallop Argopecten irradians irradians (Lamarck). J Exp Mar Biol Ecol 121:112–136. doi:https://doi.org/10.1016/0022-0981(88)90250-X

    Article  Google Scholar 

  • Fleury PG, Janssoone X, Nadeau M, Guderley H (2005) Force production during escape: sequential recruitment of the phasic and tonic portions of the adductor muscle in juvenile Placopecten magellanicus (Gmelin). J Shell Res 4:905–911

    Google Scholar 

  • Gäde G, Weeda E, Gabbott A (1978) Changes in the level of octopine during the escape responses of the scallop, Pecten maximus (L.). J Comp Physiol 124:121–127

    Article  Google Scholar 

  • Gibbons MC, Castagna M (1984) Serotonin as an inducer of spawning in six bivalve species. Aquaculture 40:189–191. doi:https://doi.org/10.1016/0044-8486(84)90356-9

    Article  CAS  Google Scholar 

  • Gibbons MC, Goodsell JG, Castagna M, Lutz RA (1983) Chemical induction of spawning by serotonin in the ocean quahog Artica islandica (Linne). J Shell Res 3:203–205

    CAS  Google Scholar 

  • Grieshaber M, Gäde G (1977) Energy supply and the formation of octopine in the adductor muscle of the scallop Pecten jacobaeus (Lamarck). Comp Biochem Physiol 58B:249–252

    Google Scholar 

  • Guderley H, Janssoone X, Nadeau M, Bourgeois M, Pérez HM (2008) Force recordings during escape responses by Placopecten magellanicus (Gmelin): seasonal changes in the impact of handling stress. J Exp Mar Biol Ecol 355:85–94. doi:https://doi.org/10.1016/j.jembe.2007.06.037

    Article  Google Scholar 

  • Hirai S, Kishimoto T, Kadam AL, Kanatani H, Koide SS (1988) Induction of spawning and oocyte maturation by 5-hydroxytryptamine in the surf clam. J Exp Zool 245:318–321. doi:https://doi.org/10.1002/jez.1402450312

    Article  CAS  Google Scholar 

  • Ishii N, Simpson AWM, Ashley CC (1989) Effects of 5-hydroxytryptamine (serotonin) and forskolin on intracellular free calcium in isolated and fura-2 loaded smooth-muscle cells from the anterior byssus retractor (catch) muscle of Mytilus edulis. Pflugers Arch 414:162–170. doi:https://doi.org/10.1007/BF00580959

    Article  CAS  Google Scholar 

  • Kraffe E, Tremblay R, Belvin S, Le Coz JR, Marty Y, Guderley H (2008) Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar Biol (Berl) 156:25–38. doi:https://doi.org/10.1007/s00227-008-1062-4

    Article  CAS  Google Scholar 

  • Livingstone DR, de Zwaan A, Thompson RJ (1981) Aerobic metabolism, octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp Biochem Physiol 70B:35–44

    CAS  Google Scholar 

  • Lubet P (1956) Effets de l’ablation des centres nerveux sur l’émission des gamètes chez Mytilus edulis L. et Chlamys varia L. (Mollusques Lamellibranches). Ann Sci Nat Zool 18:175–183

    Google Scholar 

  • Martínez G, Mettifogo L (1998) Mobilization of energy from adductor muscle for gametogenesis of the scallop, Argopecten purpuratus Lamarck. J Shell Res 17:113–116

    Google Scholar 

  • Martínez G, Pérez HM (2003) Effect of different temperature regimes on reproductive conditioning in the scallop Argopecten purpuratus. Aquaculture 228:153–167. doi:https://doi.org/10.1016/S0044-8486(03)00321-1

    Article  Google Scholar 

  • Martínez G, Saleh F, Mettifogo L, Campos E, Inestrosa N (1996a) Monoamines and the release of gametes by the scallop Argopecten purpuratus. J Exp Zool 274:365–372. doi:https://doi.org/10.1002/(SICI)1097-010X(19960415)274:6<365::AID-JEZ5>3.0.CO;2-M

    Article  Google Scholar 

  • Martínez G, Garrote C, Mettifogo L, Pérez HM, Uribe E (1996b) Monoamines and prostaglandin E2 as inducers of the spawning of the scallop, Argopecten purpuratus Lamarck. J Shell Res 15:245–249

    Google Scholar 

  • Matsutani T (1990) Endogenous factors controlling spawning in marine bivalves. In: Hoshi M, Yamashita O (eds) Advances in invertebrate reproduction, vol 5. Elsevier Science, Amsterdam, pp 231–237

    Google Scholar 

  • Matsutani T, Nomura T (1982) Induction of spawning by serotonin in the scallop Patinopecten yessoensis (Jay). Mar Biol Lett 3:353–358

    CAS  Google Scholar 

  • Olson JM, Marsh RL (1993) Contractile properties of the striated adductor muscle in the bay scallop Argopecten irradians at several temperatures. J Exp Biol 176:175–193

    CAS  PubMed  Google Scholar 

  • Ortiz M, Jesse S, Stotz W, Wolff M (2003) Feeding behaviour of the asteroid Meyenaster gelatinosus in response to changes in abundance of the scallop Argopecten purpuratus in northern Chile. Arch Hydrobiol 157:213–225. doi:https://doi.org/10.1127/0003-9136/2003/0157-0213

    Article  Google Scholar 

  • Osada M, Matsutani T, Nomura T (1987) Implication of catecholamines during spawning in marine bivalve molluscs. Invertebr Reprod Dev 12:241–252

    Article  CAS  Google Scholar 

  • Pérez HM, Janssoone X, Guderley H (2008) Tonic contractions allow metabolic recuperation of the adductor muscle during escape responses of giant scallop Placopecten magellanicus. J Exp Mar Biol Ecol 360:78–84. doi:https://doi.org/10.1016/j.jembe.2008.04.006

    Article  Google Scholar 

  • Pörtner HO, Webber DM, O`Dor RK, Boutilier R (1993) Metabolism and energetics in squid (Illex illecebrosus, Loligo pealei) during muscular fatigue and recovery. Am J Physiol Regul Integr Comp Physiol 265:157–165

    Article  Google Scholar 

  • Pörtner HO, Finke E, Lee PG (1996) Metabolic and energy correlates of intracellular pH in progressive fatigue of squid (Loligo brevis) mantle muscle. Am J Physiol Regul Integr Comp Physiol 271:1403–1414

    Article  Google Scholar 

  • Ram JL, Crawford GW, Walker JU, Mojares JJ, Patel N, Fong PP, Kyosuka K (1993) Spawning in the zebra mussel (Dreissena polymorpha): activation by internal or external application of serotonin. J Exp Zool 265:587–598. doi:https://doi.org/10.1002/jez.1402650515

    Article  CAS  Google Scholar 

  • Sastry AN (1979) Pelecypoda (excluding Ostreidae). In: Giese AC, Pearse JE (eds) Reproduction of marine invertebrates, vol 5. Academic Press, New York, pp 113–292

    Chapter  Google Scholar 

  • Siegman MJ, Mooers SU, Li C, Narayan S, Trinkle-Mulcahy L, Watabe S (1997) Phosphorylation of a high molecular weight (600 kDa) protein regulates catch in invertebrate smooth muscle. J Muscle Res Cell Motil 18:655–670. doi:https://doi.org/10.1023/A:1018683823020

    Article  CAS  Google Scholar 

  • Siegman MJ, Funabara D, Kinoshita S, Watabe S, Hartshorne DJ, Butler TM (1998) Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc Natl Acad Sci USA 95:5383–5388. doi:https://doi.org/10.1073/pnas.95.9.5383

    Article  CAS  Google Scholar 

  • Sohma H, Inoue K, Morita F (1988) A cAMP-dependent regulatory protein for RLC—a myosin kinase catalyzing the phosphorylation of scallop smooth muscle myosin light chain. J Biochem 103:431–435

    Article  CAS  Google Scholar 

  • Sweeney HL, Yang Z, Zhi G, Stull JT, Trybus KM (1994) Charge replacement near the phosphorylatable serine of the myosin regulatory light chain mimics aspects of phosphorylation. Proc Natl Acad Sci USA 91:1490–1494. doi:https://doi.org/10.1073/pnas.91.4.1490

    Article  CAS  Google Scholar 

  • Thompson RJ, Livingstone DR, de Zwaan A (1980) Physiological and biochemical aspects of valve snap and valve closure responses in the giant scallop Placopecten magellanicus. I. Physiology. J Comp Physiol 137:97–104

    Article  CAS  Google Scholar 

  • Tsutsui Y, Yoshio M, Oiwa K, Yamada A (2007) Striated muscle twitchin of bivalves has “catchability”, the ability to bind thick filaments tightly to thin filaments, representing the catch state. J Mol Biol 365:325–332. doi:https://doi.org/10.1016/j.jmb.2006.10.006

    Article  CAS  Google Scholar 

  • Vélez A, AIifa A, Azuaje O (1990) Induction of spawning by temperature and serotonin in the hermaphroditic tropical scallop, Pecten ziczac. Aquaculture 84:307–313. doi:https://doi.org/10.1016/0044-8486(90)90095-5

    Article  Google Scholar 

  • Wilkens LA (1981) Neurobiology of the scallops. I. Starfish-mediated escape behaviours. Proc R Soc Lond B Biol Sci 211:341–372. doi:https://doi.org/10.1098/rspb.1981.0011

    Article  Google Scholar 

  • Zange J, Pörtner HO, Jans AWH, Grieshaber MK (1990) The intracellular pH of a molluscan smooth muscle during a contraction-catch-relaxation cycle estimated by the distribution of [14C]DMO and by 31P-NMR spectroscopy. J Exp Biol 150:81–93

    Google Scholar 

Download references

Acknowledgments

This research was supported by funds from the RAQ and NSERC to HG and from FONDECYT 3020034 to KB. HPC was a recipient of a scholarship from the Organization of American States. The authors are extremely grateful to the staff of the “Laboratorio central de cultivos marinos” from Universidad Católica del Norte, and in particular to Carlos Solar, for facilitating our work. The technical assistance of Raul Vera, Miguel Rivera and Javier Rojas was highly appreciated. The experiments comply with the current laws of the countries in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan Mauricio Pérez.

Additional information

Communicated by S. A. Poulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, H.M., Brokordt, K.B., Martínez, G. et al. Locomotion versus spawning: escape responses during and after spawning in the scallop Argopecten purpuratus . Mar Biol 156, 1585–1593 (2009). https://doi.org/10.1007/s00227-009-1194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1194-1

Keywords

Navigation