Skip to main content
Log in

PEG quantification and examination of molecular weight distribution in wood cell walls

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The amounts of polyethylene glycol (PEG) of a range of molecular weights (200–20000) and their mixtures in wood cell walls were estimated by preferential extraction of PEG from the cell lumens. PEG extracted by toluene over 1 h extraction periods was examined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectroscopy. The assumption that a non-polar solvent would not extract PEG from the cell walls was shown to be invalid. Only about 0.07–0.08 g PEG per g dry wood was retained in wood after 12 h-toluene extraction and this value was not significantly affected by PEG molecular weight (MW). This relatively low cell wall content can result in as high as 50% cell wall bulking (CWB) which is dependent on MW. Samples treated with mixture of PEG MWs indicated preferential penetration of lower MW into cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arakawa R, Watanabe S, Fukuo T (1999) Effects of sample preparation on Matrix-assisted laser desorption/ionization Time-of-flight mass spectra for sodium polystyrene sulfonate. Rapid Commun Mass Spectrom 13:1059–1062

    Article  CAS  Google Scholar 

  • Cooper PA, Ung YT, Alexander D, Holzscherer C (1991) Diffusion into and bulking of the wood cell wall with polyethylene glycols (PEG). Proceedings of 27th Annual Meeting International Research Group on Wood Preservation, Guadeloupe, France. IRG-WP Doc 3660

  • Furuno T (1976) Structure of the interface between wood and synthetic polymer. IX. Separation of cell walls from wood-polymer composite (WPC) by ultrasonic method and existance of polymer in the wood cell wall (2). Mokuzai Gakkaishi 22(8):473–478

    CAS  Google Scholar 

  • Furuno T, Nagadomi W, Goto T (1975) Structure of the interface between wood and synthetic polymer. VI. Separation of cell walls from wood-polymer composite (WPC) by ultrasonic method and existance of polymer in the wood cell wall. Mokuzai Gakkaishi 21(3):144–150

    CAS  Google Scholar 

  • Furuno T, Imamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361

    Article  CAS  Google Scholar 

  • Gierling N, Hansmann C, Röder T, Sixta H, Gindl W, Wimmer R (2005) Comparison of UV and confocal Raman microscopy to measure the melamine-formaldehyde resin content within cell walls of impregnated spruce wood. Holzforschung 59:210–213

    Article  CAS  Google Scholar 

  • Gindl W, Dissipri E, Wimmer R (2002) Using UV-microscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood. Holzforschung 56(1):103–107

    Article  CAS  Google Scholar 

  • Gindl W, Zargar-Yaghubi F, Wimmer R (2003) Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technol 87:325–330

    Article  CAS  Google Scholar 

  • Hill CAS, Jones D (1996) The dimensional stabilisation of corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50(5):457–462

    CAS  Google Scholar 

  • Hill CAS, Jones D (1999) Dimensional changes in corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53(3):267–271

    Article  CAS  Google Scholar 

  • Ishimaru Y (1976) Adsorption of polyethylene glycol on swollen wood. I. Molecular weight dependence. Mokuzai Gakkaishi 22(1):22–28

    CAS  Google Scholar 

  • Ishimaru Y, Takahashi Y (1977) Adsorption of polyethylene glycol on swollen wood. II. preferential adsorption among molecular weight. Mokuzai Gakkaish 23(9):451–458

    CAS  Google Scholar 

  • Ishimaru Y, Inoue E, Sadoh T, Nakato K (1986) Dimensional stability of wood with adsorbed polyethylene glycol. I. effect of molecular weight. Mokuzai Gakkaishi 32(11):888–895

    CAS  Google Scholar 

  • Jackson C (1999) Evaluation of the “effective volume shift” method for axial dispersion corrections in multi-detector size exclusion chromatography. Polymer 40(13):3735–3742

    Article  CAS  Google Scholar 

  • Jeremic D, Cooper P, Heyd D (2006) PEG bulking of wood cell walls as affected by moisture content and nature of solvent. Wood Sci Technol 41(7):597–606

    Article  CAS  Google Scholar 

  • Jeremic D, Cooper P, Brodersen P (2007) Penetration of poly(ethylene glycol) into wood cell walls of red pine. Holzforschung 61(3):272–278

    Article  CAS  Google Scholar 

  • Kitani Y, Ohsawa J, Nakato K (1970) Adsorption of polyethylene glycol on water-swollen wood versus molecular weight. Mokuzai Gakkaishi 16(7):326–333

    Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood. Part II. Swelling in organic liquids. Holzforschung 48(6):480–490

    Article  CAS  Google Scholar 

  • Meier MAR, Schubert US (2003) Evaluation of a new multiple-layer spotting technique for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of synthetic polymers. Rapid Commun Mass Spectrom 17(7):713–716

    Article  PubMed  CAS  Google Scholar 

  • Morita M, Sakata I (1991) Polymer distribution in the cell-wall of a wood polyethylenimine composite. Wood Sci Technol 25(3):215–224

    Article  CAS  Google Scholar 

  • Netopilík M (2001) Influence of peak-broadening and interdetector volume error on size-exclusive chromatographic analysis with dual viscometric–concentration detection using the universal calibration method. J Chromatogr A 915(1–2):15–24

    Article  PubMed  Google Scholar 

  • Potthast A, Rosenau T, Koch H, Fischer K (1999) The reaction of phenolic model compounds in the Laccase-Mediator System (LMS)–investigations by Matrix assisted laser desorption ionization Time-of-flight Mass spectrometry (MALDI-TOF-MS). Holzforschung 53(2):175–180

    Article  CAS  Google Scholar 

  • Rapp AO, Bestgen H, Adam W, Peek R-D (1999) Electron energy loss spectroscopy (EELS) for quantification of cell-wall penetration of a melamine resin. Holzforschung 53(2):111–117

    Article  CAS  Google Scholar 

  • Sadoh T (1968) Mechanism of dimensional stabilization of wood by polyethylene glycol treatment. Mokuzai Gakkaishi 14(7):353–357

    Google Scholar 

  • Schneider von A (1969) Basic investigations on the dimensional stabilization of wood with polyethylene glycol. Holz Roh- Werkst 27:209–224

    Article  Google Scholar 

  • Schriemer DC, Li L (1997a) Mass discrimination in the analysis of polydisperse polymers by MALDI time-of-flight mass spectrometry. 1. Sample preparation and desorption/ionization issues. Anal Chem 69(20):4169–4175

    Article  CAS  Google Scholar 

  • Schriemer DC, Li L (1997b) Mass discrimination in the analysis of polydisperse polymers by MALDI time-of-flight mass spectrometry. 2. Instrumental issues. Anal Chem 69(20):4176–4183

    Article  CAS  Google Scholar 

  • Smith LA, Côté WA (1971) Studies of penetration of phenol-formaldehyde resin into wood cell walls with the SEM and energy-dispersive X-ray analyzer. Wood Fiber 3(1):56–57

    CAS  Google Scholar 

  • Smith LA, Côté WA (1972) Resin penetration into wood cell walls. J Paint Technol 44(564):71

    Google Scholar 

  • Smith WB, Côté WA, Siau JF, Vasishth RC (1985) Interaction between water-borne polymer systems and wood cell wall. J Coatings Technol 57(729):27–35

    CAS  Google Scholar 

  • Song MS, Hu GX, Li XY, Zhao B (2002) Study on the concentration effects in size exclusion chromatography: VII. A quantitative verification for the model theory of concentration and molecular mass dependences of hydrodynamic volumes for polydisperse polymers. J Chromatogr A 961(2):155–170

    Article  PubMed  CAS  Google Scholar 

  • Stamm AJ (1956) Dimensional stabilization of wood with carbowaxes. For Prod J 6(5):201–204

    Google Scholar 

  • Stamm AJ (1964) Effect of polyethylene glycol on the dimensional stability of wood. For Prod J 9(10):375–381

    Google Scholar 

  • Tarkow H, Feist WC, Southerland CF (1966) Interaction of wood with polymeric materials: Penetration versus molecular size. For Prod J 16(10):61–65

    CAS  Google Scholar 

  • Wallstrom L, Lindberg KAH (1995) Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique. Wood Sci Technol 29(2):109–119

    Article  Google Scholar 

  • Wallstrom L, Lindberg KAH (1999) Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique. Wood Sci Technol 33(2):111–122

    Article  CAS  Google Scholar 

  • Wu KJ, Odom RW (1998) Characterizing synthetic polymers by MALDI MS. Anal Chem 70(13):456A–461A

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly thankful for the input of Ms. Chun Bei Huang, Univ. of Toronto Department of Chemical Engineering, and her involvement with MALDI-TOF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragica Jeremic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeremic, D., Cooper, P. PEG quantification and examination of molecular weight distribution in wood cell walls. Wood Sci Technol 43, 317–329 (2009). https://doi.org/10.1007/s00226-008-0233-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-008-0233-2

Keywords

Navigation