Skip to main content
Log in

How Powerful Are Integer-Valued Martingales?

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In the theory of algorithmic randomness, one of the central notions is that of computable randomness. An infinite binary sequence X is computably random if no recursive martingale (strategy) can win an infinite amount of money by betting on the values of the bits of X. In the classical model, the martingales considered are real-valued, that is, the bets made by the martingale can be arbitrary real numbers. In this paper, we investigate a more restricted model, where only integer-valued martingales are considered, and we study the class of random sequences induced by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19, 357–367 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bienvenu, L., Merkle, W.: Constructive equivalence relations for computable probability measures. Ann. Pure Appl. Log. 160, 238–254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Probability Measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1995)

    MATH  Google Scholar 

  4. Chalcraft, A., Dougherty, R., Freiling, C., Teutsch, J.: How to build a warped online casino. Manuscript

  5. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  6. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010)

    Book  MATH  Google Scholar 

  7. Downey, R.G., Griffiths, E.J., Reid, S.: On Kurtz randomness. Theor. Comput. Sci. 321(2–3), 249–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hitchcock, J.M., Lutz, J.H.: Why computational complexity requires stricter martingales. Theory Comput. Syst. 39, 277–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    MathSciNet  MATH  Google Scholar 

  10. Kakutani, S.: On equivalence of infinite product measures. Ann. Math. 49, 214–224 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kurtz, S.: Randomness and genericity in the degrees of unsolvability. PhD thesis, University of Illinois at Urbana (1981)

  12. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)

    Article  Google Scholar 

  13. Merkle, W., Miller, J.S., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland randomness and stochasticity. Ann. Pure Appl. Log. 138(1–3), 183–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muchnik, A.A., Semenov, A., Uspensky, V.: Mathematical metaphysics of randomness. Theor. Comput. Sci. 207(2), 263–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nies, A.: Computability Randomness. Oxford Logic Guides, vol. 51. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  16. Ross, S.M.: Stochastic Processes, 2nd edn., Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1996)

    MATH  Google Scholar 

  17. Schnorr, C.-P.: A unified approach to the definition of random sequences. Math. Syst. Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer, Berlin (1971)

    MATH  Google Scholar 

  19. Shen, A.: On relations between different algorithmic definitions of randomness. Sov. Math. Dokl. 38, 316–319 (1989)

    MATH  Google Scholar 

  20. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Berlin (1987), A study of computable functions and computably generated sets

    Google Scholar 

  21. Vovk, V.: On a criterion for randomness. Sov. Math. Dokl. 294(6), 1298–1302 (1987)

    MathSciNet  Google Scholar 

  22. Wang, Y.: Randomness complexity. PhD thesis, Mathematisch-Naturwissenschaftlichen Gesamtfakultät, Universität Heidelberg (1996)

  23. Wang, Y.: A separation of two randomness concepts. Inf. Process. Lett. 69(3), 115–118 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Teutsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienvenu, L., Stephan, F. & Teutsch, J. How Powerful Are Integer-Valued Martingales?. Theory Comput Syst 51, 330–351 (2012). https://doi.org/10.1007/s00224-011-9362-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9362-3

Keywords

Navigation