Skip to main content

Advertisement

Log in

Ubiquitin E3 Ligase LNX2 is Critical for Osteoclastogenesis In Vitro by Regulating M-CSF/RANKL Signaling and Notch2

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The Notch signaling pathway plays a crucial role in skeletal development and homeostasis by regulating the proliferation and differentiation of osteoblasts and osteoclasts. However, the molecular mechanisms modulating the level and activity of Notch receptors in bone cells remain unknown. In this study, we uncovered that LNX2, an E3 ubiquitin ligase and Notch inhibitor Numb binding protein, was up-regulated during osteoclast differentiation. Knocking-down LNX2 expression in bone marrow macrophages by lentivirus-mediated short hairpin RNAs markedly inhibited osteoclast formation. Decreased LNX2 expression attenuated macrophage colony-stimulating factor (M-CSF)-induced ERK and AKT activation and RANKL-stimulated activation of NF-κB and JNK pathways; therefore, accelerated osteoclast apoptosis. Additionally, loss of LNX2 led to an increased accumulation of Numb, which promoted the degradation of Notch and caused a reduction of the expression of the Notch downstream target gene, Hes1. We conclude that LNX2 regulates M-CSF/RANKL and the Notch signaling pathways during osteoclastogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536

    Article  CAS  PubMed  Google Scholar 

  3. Henriksen K, Karsdal MA, John Martin T (2013) Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 94:88–97

    Article  PubMed  Google Scholar 

  4. Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA (2009) Local communication on and within bone controls bone remodeling. Bone 44:1026–1033

    Article  PubMed  Google Scholar 

  5. Sims NA, Gooi JH (2008) Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19:444–451

    Article  CAS  PubMed  Google Scholar 

  6. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  7. Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23:582–590

    Article  CAS  PubMed  Google Scholar 

  8. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649

    Article  CAS  PubMed  Google Scholar 

  9. Negishi-Koga T, Takayanagi H (2012) Bone cell communication factors and Semaphorins. BoneKEy Reports 1:183

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Engin F, Lee B (2010) NOTCHing the bone: insights into multi-functionality. Bone 46:274–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Regan J, Long F (2013) Notch signaling and bone remodeling. Current osteoporosis reports 11:126–129

    Article  PubMed Central  PubMed  Google Scholar 

  14. Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154:623–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tezuka K, Yasuda M, Watanabe N, Morimura N, Kuroda K, Miyatani S, Hozumi N (2002) Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17:231–239

    Article  CAS  PubMed  Google Scholar 

  18. Nobta M, Tsukazaki T, Shibata Y, Xin C, Moriishi T, Sakano S, Shindo H, Yamaguchi A (2005) Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem 280:15842–15848

    Article  CAS  PubMed  Google Scholar 

  19. Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518

    Article  CAS  PubMed  Google Scholar 

  20. Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305

    Article  CAS  PubMed  Google Scholar 

  22. Cotton M, Benhra N, Le Borgne R (2013) Numb inhibits the recycling of Sanpodo in Drosophila sensory organ precursor. Curr Biol 23:581–587

    Article  CAS  PubMed  Google Scholar 

  23. Couturier L, Mazouni K, Schweisguth F (2013) Numb localizes at endosomes and controls the endosomal sorting of notch after asymmetric division in Drosophila. Curr Biol 23:588–593

    Article  CAS  PubMed  Google Scholar 

  24. Giebel B, Wodarz A (2012) Notch signaling: numb makes the difference. Curr Biol 22:R133–R135

    Article  CAS  PubMed  Google Scholar 

  25. McGill MA, McGlade CJ (2003) Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278:23196–23203

    Article  CAS  PubMed  Google Scholar 

  26. Berdnik D, Torok T, Gonzalez-Gaitan M, Knoblich JA (2002) The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3:221–231

    Article  CAS  PubMed  Google Scholar 

  27. Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17:27–41

    Article  PubMed  Google Scholar 

  28. Song Y, Lu B (2012) Interaction of Notch signaling modulator Numb with alpha-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem 287:17716–17728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gulino A, Di Marcotullio L, Screpanti I (2010) The multiple functions of Numb. Exp Cell Res 316:900–906

    Article  CAS  PubMed  Google Scholar 

  30. Dho SE, Jacob S, Wolting CD, French MB, Rohrschneider LR, McGlade CJ (1998) The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J Biol Chem 273:9179–9187

    Article  CAS  PubMed  Google Scholar 

  31. Nie J, McGill MA, Dermer M, Dho SE, Wolting CD, McGlade CJ (2002) LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J 21:93–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rice DS, Northcutt GM, Kurschner C (2001) The Lnx family proteins function as molecular scaffolds for Numb family proteins. Mol Cell Neurosci 18:525–540

    Article  CAS  PubMed  Google Scholar 

  33. Lai EC (2002) Protein degradation: four E3s for the notch pathway. Curr Biol 12:R74–R78

    Article  CAS  PubMed  Google Scholar 

  34. Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H (2011) LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 6:e27285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488

    Article  CAS  PubMed  Google Scholar 

  36. Feng X, Novack DV, Faccio R, Ory DS, Aya K, Boyer MI, McHugh KP, Ross FP, Teitelbaum SL (2001) A Glanzmann’s mutation in beta 3 integrin specifically impairs osteoclast function. J Clin Invest 107:1137–1144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  38. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  CAS  PubMed  Google Scholar 

  39. Zhao H, Laitala-Leinonen T, Parikka V, Vaananen HK (2001) Downregulation of small GTPase Rab7 impairs osteoclast polarization and bone resorption. J Biol Chem 276:39295–39302

    Article  CAS  PubMed  Google Scholar 

  40. David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci 115:4317–4325

    Article  CAS  PubMed  Google Scholar 

  41. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:3482–3496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gingery A, Bradley E, Shaw A, Oursler MJ (2003) Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem 89:165–179

    Article  CAS  PubMed  Google Scholar 

  43. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289

    Article  CAS  PubMed  Google Scholar 

  44. Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, Pando MP, Asano T, Verma IM, Oda H, Nakamura K, Tanaka S (2000) Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J Cell Biol 148:333–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. McGill MA, Dho SE, Weinmaster G, McGlade CJ (2009) Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 284:26427–26438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zhou J, Fujiwara T, Ye S, Li X, Zhao H (2014) Downregulation of Notch modulators, tetraspanin 5 and 10, inhibits osteoclastogenesis in vitro. Calcif Tissue Int 95:209–217

    Article  CAS  PubMed  Google Scholar 

  47. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  51. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  CAS  PubMed  Google Scholar 

  54. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  55. Roodman GD (2006) Regulation of osteoclast differentiation. Ann NY Acad Sci 1068:100–109

    Article  CAS  PubMed  Google Scholar 

  56. Kandachar V, Roegiers F (2012) Endocytosis and control of Notch signaling. Curr Opin Cell Biol 24:534–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jansen ID, Vermeer JA, Bloemen V, Stap J, Everts V (2012) Osteoclast fusion and fission. Calcif Tissue Int 90:515–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. D’Agostino M, Tornillo G, Caporaso MG, Barone MV, Ghigo E, Bonatti S, Mottola G (2011) Ligand of Numb proteins LNX1p80 and LNX2 interact with the human glycoprotein CD8alpha and promote its ubiquitylation and endocytosis. J Cell Sci 124:3545–3556

    Article  PubMed  Google Scholar 

  59. Kansaku A, Hirabayashi S, Mori H, Fujiwara N, Kawata A, Ikeda M, Rokukawa C, Kurihara H, Hata Y (2006) Ligand-of-Numb protein X is an endocytic scaffold for junctional adhesion molecule 4. Oncogene 25:5071–5084

    CAS  PubMed  Google Scholar 

  60. Takahashi S, Iwamoto N, Sasaki H, Ohashi M, Oda Y, Tsukita S, Furuse M (2009) The E3 ubiquitin ligase LNX1p80 promotes the removal of claudins from tight junctions in MDCK cells. J Cell Sci 122:985–994

    Article  CAS  PubMed  Google Scholar 

  61. Guo Z, Song E, Ma S, Wang X, Gao S, Shao C, Hu S, Jia L, Tian R, Xu T, Gao Y (2012) Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase. J Proteome Res 11:4847–4862

    Article  CAS  PubMed  Google Scholar 

  62. Wolting CD, Griffiths EK, Sarao R, Prevost BC, Wybenga-Groot LE, McGlade CJ (2011) Biochemical and computational analysis of LNX1 interacting proteins. PLoS One 6:e26248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234

    Article  CAS  PubMed  Google Scholar 

  64. Choi YH, Ann EJ, Yoon JH, Mo JS, Kim MY, Park HS (2013) Calcium/calmodulin-dependent protein kinase IV (CaMKIV) enhances osteoclast differentiation via the up-regulation of Notch1 protein stability. Biochim Biophys Acta 1833:69–79

    Article  CAS  PubMed  Google Scholar 

  65. Duan L, de Vos P, Fan M, Ren Y (2008) Notch is activated in RANKL-induced osteoclast differentiation and resorption. Front Biosci 13:7064–7071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Stavros C Manolagas, Charles A Obrien, and Ms. GibAnn Berryhill for the critics of the manuscript prior submission. Erin Hogan is thanked for her support in microscopes. The work was supported by NIH Grants AR062012 and P01 AG13918.

Conflict of interest

Jian Zhou, Toshifumi Fujiwara, Shiqiao Ye, Xiaolin Li, Haibo Zhao state that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All animal procedures were approved by Institutional Animal Care and Use Committee at University of Arkansas for Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolin Li or Haibo Zhao.

Additional information

Jian Zhou and Toshifumi Fujiwara have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Fujiwara, T., Ye, S. et al. Ubiquitin E3 Ligase LNX2 is Critical for Osteoclastogenesis In Vitro by Regulating M-CSF/RANKL Signaling and Notch2. Calcif Tissue Int 96, 465–475 (2015). https://doi.org/10.1007/s00223-015-9967-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-9967-7

Keywords

Navigation