Skip to main content

Advertisement

Log in

Incisor Enamel Formation is Impaired in Transgenic Rats Overexpressing the Type III NaPi Transporter Slc20a1

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Inorganic phosphate (Pi) is required in many biological processes, including signaling cascades, skeletal development, tooth mineralization, and nucleic acid synthesis. Recently, we showed that Pi transport in osteoblasts, mediated by Slc20a1, a member of the type III sodium-dependent phosphate transporter family, is indispensable for osteoid mineralization in rapidly growing rat bone. In addition, we found that bone mineral density decreased slightly with dysfunction of Pi homeostasis in aged transgenic rats overexpressing mouse Slc20a1 (Slc20a1-Tg). Bone and tooth share certain common molecular features, and thus, we focused on tooth development in Slc20a1-Tg mandibular incisors in order to determine the role of Slc20a1 in tooth mineralization. Around the time of weaning, there were no significant differences in serologic parameters between wild-type and Slc20a1-Tg rats. However, histological analysis showed that Slc20a1-Tg ameloblasts formed clusters in the papillary layer during the maturation stage as early as 4 weeks of age. These pathologies became more severe with age and included the formation of cyst-like or multilayer ameloblast structures, accompanied by a chalky white appearance with abnormal attrition and fracture. Hyperphosphatemia was also observed in aging Slc20a1-Tg rats. Micro-computed tomography and electron probe microanalysis revealed impairments in enamel, such as delayed mineralization and hypomineralization. Our results suggest that enamel formation is sensitive to imbalances in Pit1-mediated cellular function as seen in bone, although these processes are under the control of systemic Pi homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berndt T, Kumar R (2007) Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 69:341–359

    Article  PubMed  CAS  Google Scholar 

  2. Foster BL, Tompkins KA, Rutherford RB, Zhang H, Chu EY, Fong H, Somerman MJ (2008) Phosphate: known and potential roles during development and regeneration of teeth and supporting structures. Birth Defects Res C Embryo Today 84:281–314

    Article  PubMed  CAS  Google Scholar 

  3. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293:F643–F654

    Article  PubMed  CAS  Google Scholar 

  4. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447:763–767

    Article  PubMed  CAS  Google Scholar 

  5. Collins JF, Bai L, Ghishan FK (2004) The SLC20 family of proteins: dual functions as sodium–phosphate cotransporters and viral receptors. Pflugers Arch 447:647–652

    Article  PubMed  CAS  Google Scholar 

  6. Bergwitz C, Juppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104

    Article  PubMed  CAS  Google Scholar 

  7. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217

    Article  PubMed  Google Scholar 

  8. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the α1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094

    Article  PubMed  CAS  Google Scholar 

  9. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505

    Article  PubMed  CAS  Google Scholar 

  10. Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2004) FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 314:409–414

    Article  PubMed  CAS  Google Scholar 

  11. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    PubMed  CAS  Google Scholar 

  12. Boukpessi T, Septier D, Bagga S, Garabedian M, Goldberg M, Chaussain-Miller C (2006) Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int 79:294–300

    Article  PubMed  CAS  Google Scholar 

  13. Goodman JR, Gelbier MJ, Bennett JH, Winter GB (1998) Dental problems associated with hypophosphataemic vitamin D resistant rickets. Int J Paediatr Dent 8:19–28

    Article  PubMed  CAS  Google Scholar 

  14. Davidovich E, Davidovits M, Eidelman E, Schwarz Z, Bimstein E (2005) Pathophysiology, therapy, and oral implications of renal failure in children and adolescents: an update. Pediatr Dent 27:98–106

    PubMed  Google Scholar 

  15. Koch MJ, Buhrer R, Pioch T, Scharer K (1999) Enamel hypoplasia of primary teeth in chronic renal failure. Pediatr Nephrol 13:68–72

    Article  PubMed  CAS  Google Scholar 

  16. Nunn JH, Sharp J, Lambert HJ, Plant ND, Coulthard MG (2000) Oral health in children with renal disease. Pediatr Nephrol 14:997–1001

    Article  PubMed  CAS  Google Scholar 

  17. Palmer G, Bonjour JP, Caverzasio J (1997) Expression of a newly identified phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-like cells and its regulation by insulin-like growth factor I. Endocrinology 138:5202–5209

    Article  PubMed  CAS  Google Scholar 

  18. Yoshiko Y, Candeliere GA, Maeda N, Aubin JE (2007) Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 27:4465–4474

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki A, Ammann P, Nishiwaki-Yasuda K, Sekiguchi S, Asano S, Nagao S, Kaneko R, Hirabayashi M, Oiso Y, Itoh M, Caverzasio J (2010) Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism. J Bone Miner Metab 28:139–148

    Article  PubMed  CAS  Google Scholar 

  20. Sekiguchi S, Suzuki A, Asano S, Nishiwaki-Yasuda K, Shibata M, Nagao S, Yamamoto N, Matsuyama M, Sato Y, Yan K, Yaoita E, Itoh M (2011) Phosphate overload induces podocyte injury via type III Na-dependent phosphate transporter. Am J Physiol Renal Physiol 300:F848–F856

    Article  PubMed  CAS  Google Scholar 

  21. Halse A, Selvig KA (1974) Incorporation of iron in rat incisor enamel. Scand J Dent Res 82:47–56

    PubMed  CAS  Google Scholar 

  22. Beck GR Jr (2003) Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90:234–243

    Article  PubMed  CAS  Google Scholar 

  23. Beck GR Jr, Moran E, Knecht N (2003) Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res 288:288–300

    Article  PubMed  CAS  Google Scholar 

  24. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357

    Article  PubMed  CAS  Google Scholar 

  25. Foster BL, Nociti FH Jr, Swanson EC, Matsa-Dunn D, Berry JE, Cupp CJ, Zhang P, Somerman MJ (2006) Regulation of cementoblast gene expression by inorganic phosphate in vitro. Calcif Tissue Int 78:103–112

    Article  PubMed  CAS  Google Scholar 

  26. Nanci A (2007) Enamel: composition, formation, and structure. In: Ten Cate AR (ed) Ten Cate’s oral histology: development, structure, and function. Mosby, St. Louis, pp 141–190

    Google Scholar 

  27. Lee SK, Krebsbach PH, Matsuki Y, Nanci A, Yamada KM, Yamada Y (1996) Ameloblastin expression in rat incisors and human tooth germs. Int J Dev Biol 40:1141–1150

    PubMed  CAS  Google Scholar 

  28. Lavelle CL (1968) Effect of age on the histologic structure of the incisors of the rat (Rattus norvegicus). J Dent Res 47:590–593

    Article  PubMed  CAS  Google Scholar 

  29. Hubbard MJ (2000) Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 11:437–466

    Article  PubMed  CAS  Google Scholar 

  30. Zhao D, Vaziri Sani F, Nilsson J, Rodenburg M, Stocking C, Linde A, Gritli-Linde A (2006) Expression of Pit2 sodium–phosphate cotransporter during murine odontogenesis is developmentally regulated. Eur J Oral Sci 114:517–523

    Article  PubMed  CAS  Google Scholar 

  31. Dumitrescu CE, Kelly MH, Khosravi A, Hart TC, Brahim J, White KE, Farrow EG, Nathan MH, Murphey MD, Collins MT (2009) A case of familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome due to a compound heterozygous mutation in GALNT3 demonstrating new phenotypic features. Osteoporos Int 20:1273–1278

    Article  PubMed  CAS  Google Scholar 

  32. Halse A (1973) Effect of dietary iron deficiency on the pigmentation and iron content of rat incisor enamel. Scand J Dent Res 81:319–334

    PubMed  CAS  Google Scholar 

  33. Pindborg JJ (1952) The effect of vitamin E deficiency on the rat incisor. J Dent Res 31:805–811

    Article  PubMed  CAS  Google Scholar 

  34. Warshawsky H, Smith CE (1974) Morphological classification of rat incisor ameloblasts. Anat Rec 179:423–446

    Article  PubMed  CAS  Google Scholar 

  35. Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial–mesenchymal FGF signaling. Dev Cell 11:181–190

    Article  PubMed  CAS  Google Scholar 

  36. Thomas BL, Tucker AS, Qui M, Ferguson CA, Hardcastle Z, Rubenstein JL, Sharpe PT (1997) Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 124:4811–4818

    PubMed  CAS  Google Scholar 

  37. Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y (2004) Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 167:973–983

    Article  PubMed  CAS  Google Scholar 

  38. Stein G, Boyle PE (1959) Pigmentation of the enamel of albino rat incisor teeth. Arch Oral Biol 1:97–105

    Article  PubMed  CAS  Google Scholar 

  39. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, Cherel Y, Weiss P, Guicheux J (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148:530–537

    Article  PubMed  CAS  Google Scholar 

  40. Beck GR Jr, Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929

    Article  PubMed  CAS  Google Scholar 

  41. Wittrant Y, Bourgine A, Khoshniat S, Alliot-Licht B, Masson M, Gatius M, Rouillon T, Weiss P, Beck L, Guicheux J (2009) Inorganic phosphate regulates Glvr-1 and -2 expression: role of calcium and ERK1/2. Biochem Biophys Res Commun 381:259–263

    Article  PubMed  CAS  Google Scholar 

  42. Cho KW, Cai J, Kim HY, Hosoya A, Ohshima H, Choi KY, Jung HS (2009) ERK activation is involved in tooth development via FGF10 signaling. J Exp Zool B Mol Dev Evol 312:901–911

    Article  PubMed  Google Scholar 

  43. Lee MJ, Cai J, Kwak SW, Cho SW, Harada H, Jung HS (2009) MAPK mediates Hsp25 signaling in incisor development. Histochem Cell Biol 131:593–603

    Article  PubMed  CAS  Google Scholar 

  44. Beck L, Leroy C, Salaun C, Margall-Ducos G, Desdouets C, Friedlander G (2009) Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem 284:31363–31374

    Article  PubMed  CAS  Google Scholar 

  45. Beck L, Leroy C, Beck-Cormier S, Forand A, Salaun C, Paris N, Bernier A, Urena-Torres P, Prie D, Ollero M, Coulombel L, Friedlander G (2010) The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS One 5:e9148

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Akifumi Kanda, Chika Kosako, and Miyuki Yoshioka for animal maintenance and genotyping. We are also grateful to Hayami Ishisako for the preparation of EPMA samples and Yasuhiro Shibata for conducting the EPMA. This work was supported by the Japan Society for the Promotion of Science (Grants-in-Aid for Young Scientists 21890156 and 22791768 to H. Y., and Grants-in-Aid for Scientific Research 18592001 and 20592139 to Y. Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yoshiko.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshioka, H., Yoshiko, Y., Minamizaki, T. et al. Incisor Enamel Formation is Impaired in Transgenic Rats Overexpressing the Type III NaPi Transporter Slc20a1. Calcif Tissue Int 89, 192–202 (2011). https://doi.org/10.1007/s00223-011-9506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9506-0

Keywords

Navigation