Skip to main content
Log in

Osteopontin Facilitates Bone Resorption, Decreasing Bone Mineral Crystallinity and Content During Calcium Deficiency

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteopontin null-mice were previously shown to have bones containing more mineral and larger mineral crystals. These bones were independently seen to be resistant to ovariectomy-induced remodeling. To separate the physicochemical effects of osteopontin, which is an in vitro inhibitor of mineral crystal formation and growth, from effects of osteopontin on in vivo bone remodeling, this study examined mature (5-month-old) osteopontin-null (Opn−/−) and wildtype (WT) mice given a calcium-deficient diet. Biochemical parameters were measured during 4 weeks of Ca deficiency, followed by 1 week of refeeding adequate Ca. Ca deficiency caused a transiently greater rise in bone resorption in WT than Opn−/− mice (P = 0.01), whereas only the Opn−/− mice tended to increase Ca absorption (P = 0.08), yet both groups showed elevated levels of parathyroid hormone (PTH) (P < 0.001). The rise in markers of bone formation due to Ca deficiency was similar in both groups during Ca deficiency. Fourier transform infrared microspectroscopy assessed mineral properties at 20 µm spatial resolution in different anatomic regions of the bone. The Ca-deficient Opn−/− animals had slightly increased mineral content as compared to the WT, and there was a significant increase in the mineral content of older (endosteal) bone, implying that osteoclast recruitment was impaired. Crystallinity in the Ca-deficient Opn−/− bones was increased relative to the Ca-deficient WT at all sites except adjacent to the periosteum (younger mineral). These data suggest that osteopontin has both a physicochemical effect (inhibiting crystal growth and crystal proliferation) and a role in osteoclast recruitment, and in its absence, extraskeletal organs maintain calcium homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. DT Denhardt M Noda AW O’Regan D Pavlin JS Berman (2001) ArticleTitleOsteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107 1055–1061 Occurrence Handle1:CAS:528:DC%2BD3MXjsVCjtL0%3D Occurrence Handle11342566

    CAS  PubMed  Google Scholar 

  2. WT Butler AL Ridall MD McKee (1996) Osteopontin. JP Bilezikian LG Raisz GA Rodan (Eds) Principles of bone biology. Academic Press, San Diego, 167–181

    Google Scholar 

  3. AL Boskey M Maresca W Ullrich SB Doty WT Butler CW Prince (1993) ArticleTitleOsteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22 147–159 Occurrence Handle1:CAS:528:DyaK2cXnsVagtQ%3D%3D Occurrence Handle8251766

    CAS  PubMed  Google Scholar 

  4. GK Hunter CL Kyle HA Goldberg (1994) ArticleTitleModulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300 723–728 Occurrence Handle1:CAS:528:DyaK2cXkt12mt78%3D Occurrence Handle8010953

    CAS  PubMed  Google Scholar 

  5. JT Stubbs III (1996) ArticleTitleGeneration and use of recombinant human bone sialoprotein and osteopontin for hydroxyapatite studies. Connect Tissue Res 35 393–399 Occurrence Handle9084680

    PubMed  Google Scholar 

  6. GK Hunter PV Hauschka AR Poole LC Rosenberg HA Goldberg (1996) ArticleTitleNucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317 IssueIDPt 1 59–64 Occurrence Handle1:CAS:528:DyaK28Xktl2mtb8%3D Occurrence Handle8694787

    CAS  PubMed  Google Scholar 

  7. AL Boskey (1995) ArticleTitleOsteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann NY Acad Sci 760 249–256 Occurrence Handle1:CAS:528:DyaK2MXovVSitrY%3D Occurrence Handle7785899

    CAS  PubMed  Google Scholar 

  8. JA Wesson EM Worcester JH Wiessner NS Mandel JG Kleinman (1998) ArticleTitleControl of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 53 952–957 Occurrence Handle10.1046/j.1523-1755.1998.00839.x Occurrence Handle1:CAS:528:DyaK1cXisVKmtrs%3D Occurrence Handle9551403

    Article  CAS  PubMed  Google Scholar 

  9. CM Giachelli S Steitz (2000) ArticleTitleOsteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19 615–622 Occurrence Handle10.1016/S0945-053X(00)00108-6 Occurrence Handle1:CAS:528:DC%2BD3MXhsFClsg%3D%3D Occurrence Handle11102750

    Article  CAS  PubMed  Google Scholar 

  10. D Proudfoot JN Skepper CM Shanahan PL Weissberg (1998) ArticleTitleCalcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterioscler Thromb Vasc Biol 18 379–388 Occurrence Handle1:CAS:528:DyaK1cXit1eisLw%3D

    CAS  Google Scholar 

  11. JC Lieske MS Hammes JR Hoyer FG Toback (1997) ArticleTitleRenal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Kidney Int 51 679–686 Occurrence Handle1:CAS:528:DyaK2sXitFamu7k%3D Occurrence Handle9067899

    CAS  PubMed  Google Scholar 

  12. GR Beck Jr B Zerler E Moran (2000) ArticleTitlePhosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA. 97 8352–8357 Occurrence Handle10.1073/pnas.140021997 Occurrence Handle1:STN:280:DC%2BD3cvgs12isw%3D%3D Occurrence Handle10890885

    Article  CAS  PubMed  Google Scholar 

  13. SR Rittling HN Matsumoto MD McKee et al. (1998) ArticleTitleMice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13 1101–1111 Occurrence Handle1:CAS:528:DyaK1cXks1arsr8%3D Occurrence Handle9661074

    CAS  PubMed  Google Scholar 

  14. L Liaw DE Birk CB Ballas JS Whitsitt JM Davidson BL Hogan (1998) ArticleTitleAltered wound healing in mice lacking a functional osteopontin gene (suppl). J Clin Invest 101 1468–1478 Occurrence Handle1:CAS:528:DyaK1cXitleksbw%3D

    CAS  Google Scholar 

  15. AL Boskey L Spevak E Paschalis SB Doty MD McKee (2002) ArticleTitleOsteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 70 145–154 Occurrence Handle10.1007/s00223-001-1121-z

    Article  Google Scholar 

  16. H Yoshitake SR Rittling DT Denhardt M Noda (1999) ArticleTitleOsteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 96 8156–8160 Occurrence Handle10.1073/pnas.96.14.8156 Occurrence Handle1:CAS:528:DyaK1MXltVOrsL8%3D Occurrence Handle10393964

    Article  CAS  PubMed  Google Scholar 

  17. H Ihara DT Denhardt K Furuya et al. (2001) ArticleTitleParathyroid hormone-induced bone resorption does not occur in the absence of osteopontin. J Biol Chem 276 13065–13071 Occurrence Handle10.1074/jbc.M010938200 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyms7c%3D Occurrence Handle11278791

    Article  CAS  PubMed  Google Scholar 

  18. M Ishijima SR Rittling T Yamashita et al. (2001) ArticleTitleEnhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 193 399–404 Occurrence Handle10.1084/jem.193.3.399 Occurrence Handle1:CAS:528:DC%2BD3MXhtVOgu7g%3D Occurrence Handle11157060

    Article  CAS  PubMed  Google Scholar 

  19. DT Denhardt M Noda (1998) ArticleTitleOsteopontin expression and function: role in bone remodeling. J Cell Biochem (suppl) 30–31 92–102

    Google Scholar 

  20. DN Kalu C Chen (1999) ArticleTitleOvariectomized murine model of postmenopausal calcium malabsorption. J Bone Miner Res 14 593–601 Occurrence Handle1:STN:280:DyaK1M3ltVynsg%3D%3D Occurrence Handle10234581

    CAS  PubMed  Google Scholar 

  21. H Stegemann K Stalder (1967) ArticleTitleDetermination of hydroxyproline. Clin Chim Acta 18 267–273 Occurrence Handle1:CAS:528:DyaF2sXltFCht70%3D Occurrence Handle4864804

    CAS  PubMed  Google Scholar 

  22. RW Farndale CA Sayers AJ Barrett (1982) ArticleTitleA direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9 247–248 Occurrence Handle1:CAS:528:DyaL38XlslyitLY%3D Occurrence Handle6215207

    CAS  PubMed  Google Scholar 

  23. S Aparicio SB Doty NP Camacho EP Paschalis L Spevak R Mendelsohn AL Boskey (2002) ArticleTitleOptimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcif Tissue Int 70 422–429 Occurrence Handle1:CAS:528:DC%2BD38Xlt1KntL4%3D Occurrence Handle12055658

    CAS  PubMed  Google Scholar 

  24. SJ Gadaleta EP Paschalis F Betts R Mendelsohn AL Boskey (1996) ArticleTitleFourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58 9–16 Occurrence Handle10.1007/s002239900004 Occurrence Handle1:CAS:528:DyaK28XmvFKisw%3D%3D Occurrence Handle8825233

    Article  CAS  PubMed  Google Scholar 

  25. EP Paschalis F Betts E DiCarlo R Mendelsohn AL Boskey (1997) ArticleTitleFTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61 480–486 Occurrence Handle10.1007/s002239900371 Occurrence Handle1:CAS:528:DyaK2sXnvVWjuro%3D Occurrence Handle9383275

    Article  CAS  PubMed  Google Scholar 

  26. E Noiri K Dickman F Miller et al. (1999) ArticleTitleReduced tolerance to acute renal ischemia in mice with a targeted disruption of the osteopontin gene. Kidney Int 56 74–82 Occurrence Handle10.1046/j.1523-1755.1999.00526.x Occurrence Handle1:CAS:528:DyaK1MXksVOqurk%3D Occurrence Handle10411681

    Article  CAS  PubMed  Google Scholar 

  27. DN Kalu PB Orhii (1999) ArticleTitleCalcium absorption and bone loss in ovariectomized rats fed varying levels of dietary calcium. Calcif Tissue Int 65 73–77 Occurrence Handle10.1007/s002239900660 Occurrence Handle1:CAS:528:DyaK1MXktleru74%3D Occurrence Handle10369737

    Article  CAS  PubMed  Google Scholar 

  28. SM Talbott SA Shapses (1998) ArticleTitleEnergy and calcium induced alterations in bone turnover and density in young and aged female rats. J Nutr 128 640–645 Occurrence Handle1:CAS:528:DyaK1cXhs1Wksb4%3D Occurrence Handle9482775

    CAS  PubMed  Google Scholar 

  29. EJ Murray SS Murray M Grisanti ME Duarte MR Urist (1997) ArticleTitleEffect of low dietary calcium on bone metabolism in the SENCAR mouse. J Orthop Res 15 585–592 Occurrence Handle1:CAS:528:DyaK2sXntVClu7k%3D Occurrence Handle9379269

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DE04141 (Boskey), AR44434 (Denhardt) and AG12161 (Shapses). The authors would like to thank Ms Orla O’Shea for her assistance with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Boskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapses, S., Cifuentes, M., Spevak, L. et al. Osteopontin Facilitates Bone Resorption, Decreasing Bone Mineral Crystallinity and Content During Calcium Deficiency . Calcif Tissue Int 73, 86–92 (2003). https://doi.org/10.1007/s00223-002-1090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-002-1090-x

Keywords

Navigation