Skip to main content
Log in

Artin groups of Euclidean type

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This article resolves several long-standing conjectures about Artin groups of Euclidean type. Specifically we prove that every irreducible Euclidean Artin group is a torsion-free centerless group with a decidable word problem and a finite-dimensional classifying space. We do this by showing that each of these groups is isomorphic to a subgroup of a group with an infinite-type Garside structure. The Garside groups involved are introduced here for the first time. They are constructed by applying semi-standard procedures to crystallographic groups that contain Euclidean Coxeter groups but which need not be generated by the reflections they contain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Allcock, D.: Braid pictures for Artin groups. Trans. Am. Math. Soc. 354(9), 3455–3474 (2002). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baumeister, B., Dyer, M., Stump, C., Wegener, P.: A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements. Proc. Am. Math. Soc. Ser. B 1, 149–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessis, D.: The dual braid monoid. Ann. Sci. École Norm. Sup. (4) 36(5), 647–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birman, J.S.: Braids, Links, and Mapping Class Groups. Princeton University Press, Princeton (1974). Annals of Mathematics Studies, No. 82

  5. Brady, T., McCammond, J.P.: Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151(1), 1–9 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brady, T., McCammond, J.: Braids, posets and orthoschemes. Algebr. Geom. Topol. 10(4), 2277–2314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brady, N., McCammond, J.: Factoring Euclidean isometries. Int. J. Algebra Comput. 25(1–2), 325–347 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brady, T., Watt, C.: \(K(\pi ,1)\)’s for Artin groups of finite type. In: Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), vol. 94, pp. 225–250 (2002)

  10. Charney, R., Meier, J., Whittlesey, K.: Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedic. 105, 171–188 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Charney, R., Peifer, D.: The \(K(\pi,1)\)-conjecture for the affine braid groups. Comment. Math. Helv. 78(3), 584–600 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehornoy, P., Digne, F., Michel, J.: Garside families and Garside germs. J. Algebra 380, 109–145 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehornoy, P.: Foundations of Garside theory, EMS Tracts in Mathematics, vol. 22, European Mathematical Society (EMS), Zürich, 2015, With François Digne, Eddy Godelle, Daan Krammer and Jean Michel, Contributor name on title page: Daan Kramer

  14. Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Digne, F.: Présentations duales des groupes de tresses de type affine \({\widetilde{A}}\). Comment. Math. Helv. 81(1), 23–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Digne, F.: A Garside presentation for Artin-Tits groups of type \({\widetilde{C}}_n\). Ann. Inst. Fourier (Grenoble) 62(2), 641–666 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. Lond. Math. Soc. (3) 79(3), 569–604 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)

    Book  MATH  Google Scholar 

  19. Godelle, E., Paris, L.: Basic questions on Artin-Tits groups. Configuration spaces, CRM Series, vol. 14, Ed. Norm., Pisa, pp. 299–311 (2012)

  20. Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  21. Igusa, K., Schiffler, R.: Exceptional sequences and clusters. J. Algebra 323(8), 2183–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kent, R.P. IV, Peifer, D.: A geometric and algebraic description of annular braid groups. Int. J. Algebra Comput. 12(1–2), 85–97 (2002). International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000)

  23. McCammond, J.: Pulling apart orthogonal groups to find continuous braids, Preprint (2010)

  24. McCammond, J.: The structure of Euclidean Artin groups. In: Proceedings of the 2013 Durham Conference on Geometric and Cohomological Group Theory (to appear). arXiv:1312.7781

  25. McCammond, J.: Dual Euclidean Artin groups and the failure of the lattice property. J. Algebra 437, 308–343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Orellana, R., Ram, A.: Affine braids, Markov traces and the category \({\cal{O}}\). Algebraic groups and homogeneous spaces. Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, pp. 423–473 (2007)

  27. Reiner, V.: Non-crossing partitions for classical reflection groups. Discrete Math. 177(1–3), 195–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Salvetti, M.: Topology of the complement of real hyperplanes in \({ C}^N\). Invent. Math. 88(3), 603–618 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Salvetti, M.: The homotopy type of Artin groups. Math. Res. Lett. 1(5), 565–577 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Squier, C.C.: On certain \(3\)-generator Artin groups. Trans. Am. Math. Soc. 302(1), 117–124 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Stanley, R.P.: Enumerative Combinatorics, vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original

  32. Sulway, R.: Braided Versions of Crystallographic Groups. Ph.D. thesis, University of California, Santa Barbara (2010)

  33. tom Dieck, T.: Categories of rooted cylinder ribbons and their representations. J. Reine Angew. Math. 494, 35–63 (1998). Dedicated to Martin Kneser on the occasion of his 70th birthday

    MathSciNet  MATH  Google Scholar 

  34. van der Lek, H.: Extended Artin groups. Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Am. Math. Soc., Providence, RI, pp. 117–121 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon McCammond.

Additional information

Partial support by the National Science Foundation is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCammond, J., Sulway, R. Artin groups of Euclidean type. Invent. math. 210, 231–282 (2017). https://doi.org/10.1007/s00222-017-0728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-017-0728-2

Mathematics Subject Classification

Navigation