Abstract
We prove the existence and uniqueness of the weak Kähler–Ricci flow on projective varieties with log terminal singularities. We also show that the weak Kähler–Ricci flow can be uniquely continued through divisorial contractions and flips if they exist. Finally we propose an analytic version of the minimal model program with Ricci flow.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aubin, T.: Equations du type Monge–Ampère sur les variétés Kähleriennes compacts. Bull. Sci. Math. 102, 119–121 (1976)
Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)
Blocki, Z., Kolodziej, S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135(7), 2089–2093 (2007)
Cao, H.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)
Chen, X.X., Ding, W.: Ricci flow on surfaces with degenerate initial metrics. J. Partial Differ. Equ. 20, 193–202 (2007)
Chen, X.X., Tian, G.: Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Études Sci. 107, 1–107 (2008)
Chen, X.X., Tian, G., Zhang, Z.: On the weak Kähler–Ricci flow. Trans. Am. Math. Soc. 363(6), 2849–2863 (2011)
Chow, B.: The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)
Debarre, O.: Higher-dimensional algebraic geometry, xiv+233 pp. Universitext. Springer, New York (2001)
Demailly, J.-P., Pali, N.: Degenerate complex Monge–Ampère equations over compact Kähler manifolds. Int. J. Math. 21(3), 357–405 (2010)
Dinew, S., Zhang, Z.: Stability of bounded solutions for degenerate complex Monge–Ampère equations. Adv. Math. 225(1), 367–388 (2010)
Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)
Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler–Einstein metrics. J. Am. Math. Soc. 22(3), 607–639 (2009)
Eyssidieux, P., Guedj, V., Zeriahi, A.: A priori \(L^{\infty }\)-estimates for degenerate complex Monge–Ampère equations. Int. Math. Res. Not. IMRN Art. ID rnn 070, 8 pp (2008)
Eyssidieux, P., Guedj, V., Zeriahi, A.: Viscosity solutions to degenerate complex Monge–Ampère equations. Commun. Pure Appl. Math. 64(8), 1059–1094 (2011)
Fornaess, J.E., Narasimhan, R.: The Levi problem on complex spaces with singularities. Math. Ann. 248(1), 47–72 (1980)
Hacon, C., McKernen, J.: Existence of minimal models for varieties of log general type II. J. Am. Math. Soc. 23(2), 469–490 (2010)
Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)
Kawamata, Y., Matsuda, K., K. Matsuki, K.: Introduction to the minimal model problem. In: Oda,T. (ed.) Algebraic Geometry (Sendai, 1985), vol. 10, pp. 283–360. Adv. Stud. Pure Math., Amsterdam (1987)
Kolodziej, S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)
Kolodziej, S.: The Monge–Ampr̀e equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(3), 667–686 (2003)
Li, P., Yau, S.T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pp. 205–239, Proc. Sympos. Pure Math., XXXVI. Amer. Math. Soc., Providence (1980)
Lazarafeld, J.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. In: A Series of Modern Surveys in Mathematics, vol. 48, xviii+387 pp. Springer, Berlin (2004)
Phong, D.H., Sturm, J.: On the Kähler–Ricci flow on complex surfaces. Pure Appl. Math. Q. 1(2), 405–413 (2005). (part 1)
Phong, D.H., Sturm, J.: On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)
Phong, D.H., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler–Ricci flow. Commun. Anal. Geom. 15(3), 613–632 (2007)
Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow and the \({{\bar{\partial }}}\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)
Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The modified Kähler–Ricci flow and solitons. Comment. Math. Helv. 86(1), 91–112 (2011)
Sesum, N., Tian, G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)
Siu, Y.-T.: Techniques for the Analytic Proof of the finite Generation of the Canonical Ring. In: Jerison, D., et al. (eds.) Current Developments in Mathematics, 2007, 177–219. Int. Press, Somerville (2009)
Song, J.: Finite time extinction of the Kähler–Ricci flow. Math. Res. Lett. 21(6), 1435–1449 (2014)
Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)
Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc. 25(2), 303–353 (2012)
Song, J., Weinkove, B.: The Kähler–Ricci flow on Hirzebruch surfaces. J. Reine Angew. Math. 659, 141–168 (2011)
Song, J., Weinkove, B.: Lecture notes on the Kähler-Ricci flow. In: Boucksom, S. et al. (eds.) An Introduction to the Kähler-Ricci Flow, Lecture Notes in Math., vol. 2086, pp. 89–188. Springer, Cham (2013)
Song, J., Yuan, Y.: Convergence of the Kähler-Ricci flow on singular Calabi-Yau varietie. In: Ji, L. et al. (eds.) Advances in Geometric Analysis, Adv. Lect. Math. (ALM), vol. 21, pp. 119–137. Int. Press, Somerville (2012)
Szekelyhidi, G.: The Kähler–Ricci flow and K-stability. Am. J. Math. 132(4), 1077–1090 (2010)
Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)
Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99–130 (1990)
Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)
Tian, G.: New progress and problems on Kähler–Ricci flow. Différ. Phys. Math. Math. Soc. II. Astérisque 322, 71–92 (2008)
Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)
Tian, G., Zhu, X.: Convergence of Kähler Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)
Tosatti, V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)
Tsuji, H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281, 123–133 (1988)
Ueno, K.: Classification theory of algebraic varieties and compact complex spaces, notes written in collaboration with P. Cherenack. In: Lecture Notes in Mathematics, vol. 439, xix+278 pp. Springer, Berlin (1975)
Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)
Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)
Yau, S.-T.: Open problems in geometry. Proc. Symp. Pure Math. 54, 1–28 (1993). (problem 65)
Zhang, Z.: On degenerate Monge–Ampère equations over closed Kähler manifolds. Int. Math. Res. Not. Art. ID 63640, 18 pp (2006)
Zhang, Z.: Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type. Int. Math. Res. Not. (2009). doi:10.1093/imrn/rnp073
Zhang, Z.: Scalar curvature behavior for finite time singularity of Kähler–Ricci flow. Michigan Math. J. 59(2), 419–433 (2010)
Acknowledgments
The authors would particularly like to thank Chenyang Xu for many inspiring discussions and for bringing MMP with scaling to the authors’ attention. They thank Valentino Tosatti for a number of helpful suggestions on a previous draft of the paper. They The first named author is grateful to D. H. Phong for his advice, encouragement and support. He also wants to thank Yuan Yuan for some helpful discussions and comments. Finally, both authors would like to thank the referee for the careful review and many valuable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported in part by National Science Foundation Grants DMS-0847524 and DMS-0804095. Jian Song is also supported in part by a Sloan Foundation Fellowship.
Rights and permissions
About this article
Cite this article
Song, J., Tian, G. The Kähler–Ricci flow through singularities. Invent. math. 207, 519–595 (2017). https://doi.org/10.1007/s00222-016-0674-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-016-0674-4