Skip to main content
Log in

Elliptic curves over real quadratic fields are modular

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that all elliptic curves defined over real quadratic fields are modular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In \({{\mathrm{GL}}}_2({\mathbb {F}}_3)\) the normalizer of a split Cartan subgroup is contained as an index \(2\) subgroup in the normalizer of a non-split Cartan subgroup, as the latter is a 2-Sylow subgroup.

  2. Indeed, the absence of (c) is the reason why we do not yet have a parametrization of quadratic points on the family \(X(\mathrm {b}N)\), even though (a) and (b) are known [37] for prime \(N>71\), where \(\mathcal {A}\) is the Eisenstein quotient of \(J_0(N)\), and \(p\) is any prime \(\ne 2\), \(3\), \(5\).

References

  1. Allen, P.B.: Modularity of nearly ordinary 2-adic residually dihedral Galois representations. arXiv:1301.1113v2, 11 Sep 2013

  2. Banwait, B.S., Cremona, J.: Tetrahedral elliptic curves and the local-to-global principle for isogenies. arXiv:1306.6818v2, 16 Aug 2013

  3. Barnet-Lamb, T., Gee, T., Geraghty, D.: Congruences between Hilbert modular forms: constructing ordinary lifts. Duke Math. J. 161, 1521–1580 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barnet-Lamb, T., Gee, T., Geraghty, D.: Congruences between Hilbert modular forms: constructing ordinary lifts II. Math. Res. Lett. 20, 81–86 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bars, F., Kontogeorgis, A., Xarles, X.: Bielliptic and hyperelliptic modular curves \(X(n)\) and the group \(Aut(X(n))\), Acta Arith. (to appear)

  6. Bennett, M.A., Chen, I., Dahmen, S.R., Yazdani, S.: Generalized Fermat equations: a miscellany. preprint (2013)

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I: the user language. J. Symb. Comp. 24, 235–265 (1997) (See also http://magma.maths.usyd.edu.au/magma/)

  8. Blasius, D., Rogawski, J.D.: Motives for Hilbert modular forms. Invent. Math. 114(1), 55–87 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over \({\mathbb{Q}}\): wild \(3\)-adic exercises. J. Am. Math. Soc. 14, 843–939 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Breuil, C., Diamond, F.: Formes modulaires de Hilbert modulo p et valeurs d’extensions galoisiennes. Ann. Sci. l’École Norm. Supér. (to appear)

  11. Bruin, P., Najman, F.: On isogenies of elliptic curves over quadratic fields. preprint (2013)

  12. Carayol, H.: Sur les représentations \(\ell \)- adiques associées aux formes modulaires de Hilbert. Ann. Sci. Econ. Norm. Sup. 4, 409–468 (1986)

    MathSciNet  Google Scholar 

  13. Carayol, H.: Sur les représentations galoisiennes modulo attachées aux formes modulaires. Duke Math. J. 59, 785–801 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, I.: The Jacobian of modular curves associated to cartan subgroups, DPhil thesis, University of Oxford (1996)

  15. Conrad, B., Diamond, F., Taylor, R.: Modularity of certain potentially Basotti–Tate Galois representations. J. Am. Math. Soc. 12(2), 521–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cremona, J.E.: Algorithms for Modular Elliptic Curves. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Danilov, V.I., Shokurov, V.V.: Algebraic Curves, Algebraic Manifolds and Schemes. Springer, Berlin (1998)

    MATH  Google Scholar 

  18. Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. In: Coates, J., Yau, S.T. (eds.) Elliptic Curves, Modular Forms and Fermat’s Last Theorem, pp. 2–140, 2nd edn. International Press, Cambridge (1997)

  19. Diamond, F.: On deformation rings and Hecke rings. Ann. Math. 144, 137–166 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Diamond, F., Shurman, J.: A First Course on Modular Forms, GTM 228, Springer (2005)

  21. Dieulefait, L., Freitas, N.: Fermat-type equations of signature (13,13, p) via Hilbert cuspforms. Math. Ann. (to appear) (2013)

  22. Ellenberg, J.: Serre’s conjecture over \({\mathbb{F}}_9\). Ann. Math. 161(2), 1111–1142 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Elkies, N.: The Klein quartic in number theory. In: Levy, S. (ed.) The Eightfold Way: The Beauty of Klein’s Quartic Curve. vol 35, MSRI Publications (1998)

  24. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Faltings, G.: The general case of S. Langs conjecture, pages 175182 of Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, Academic Press, San Diego, CA (1994)

  26. Freitas, N.: Recipes for Fermat-type equations of the form \(x^{r} + y^{r} = Cz^{p}\)

  27. Fisher, T.: The invariants of a genus one curves. Proc. Lond. Math. Soc. 97, 753–782 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Flynn, E.V., Testa, D.: Finite weil restrictions of curves. arXiv:1210.4407v3, 19 May 2013

  29. Freitas, N., Siksek, S.: Modularity and the Fermat equation over totally real fields. arXiv:1307.3162, 11 July 2013

  30. Galbraith, S.D.: Equations for modular curves, DPhil thesis, University of Oxford (1996)

  31. Gee, T.: Automorphic lifts of prescribed types. Math. Ann. 350, 107–144 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Halberstadt, E., Kraus, A.: Sur la courbe modulaire \(X_E(7)\). Exp. Math. 12(1), 27–40 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Harris, J., Silverman, J.H.: Bielliptic curves and symmetric products. Proc. Am. Math. Soc. 112(2), 347–356 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hartshorne, R.: Algebraic Geometry, GTM 52, Springer (1977)

  35. Jarvis, F., Manoharmayum, J.: On the modularity of supersingular elliptic curves over certain totally real number fields. J. Number Theory 128(3), 589–618 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jarvis, F., Meekin, P.: The Fermat equation over \({\mathbb{Q}}(\sqrt{2})\). J. Number Theory 109(1), 182–196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kamienny, S.: Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109(2), 221–229 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. Second Ser. 170(3), 1085–1180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Langlands, R.: Base change for GL(2). Ann. Math. Studies 96, Princeton University Press (1980)

  42. Le Hung, B.: Modularity of elliptic curves over some totally real fields. arXiv:1309.4134, 16 Sep 2013

  43. Ligozat, G.: Courbes modulaires de niveau 11. In: Serre, J.-P., Zagier, D.B. (eds.) Modular Functions of One Variable V, Lecture Notes in Mathematics, vol. 601, pp. 147–237. Springer, Berlin (1977)

  44. Manoharmayum, J.: On the modularity of certain \(GL_2({\mathbb{F}}_7)\) Galois representations. Math. Res. Lett. 8(5–6), 703–712 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. Manoharmayum, J.: Serre’s conjecture for mod 7 Galois representations. In: Cremona, J., Lario, J.C., Quer, J., Ribet, K. (eds.) Modular curves and Abelian varieties. Progr. Math., vol. 224, pp. 141–149. Birkhäuser, Basel (2004)

  46. Mazur, B.: Rational points on modular curves. In: Serre, J.-P., Zagier, D.B. (eds.) Modular Functions of One Variable V, Lecture Notes in Mathematics, vol. 601, pp. 147–237. Springer, Berlin (1977)

  47. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47(1977), 33–186 (1978)

    Google Scholar 

  48. Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124(1–3), 437–449 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic Geometry, pp. 103–150. Springer, Berlin (1986)

  50. Muić, G.: On embeddings of modular curves in projective space. preprint, 17 March 2012

  51. Poonen, B., Schaefer, E.F., Stoll, M.: Twists of X(7) and primitive solutions to \(x^2+y^3=z^7\). Duke Math. J. 137, 103–158 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ogg, A.: Hyperelliptic modular curves. Bull. Soc. Math. Fr. 102, 449–462 (1974)

    MATH  MathSciNet  Google Scholar 

  53. Ribet, K.A.: Abelian varieties over \({\mathbb{Q}}\) and modular forms. In: Cremona, J., Lario, J.C., Quer, J., Ribet, K. (eds.) Modular curves and Abelian varieties. Progr. Math., vol. 224, pp. 241–261. Birkhäuser, Basel (2004)

  54. Rohrlich, D.E.: Elliptic curves and the Weil-Deligne group. In: Kisilevsky, H., Murty, M.R. (eds.) Elliptic curves and related topics. CRM Proceedings and Lecture Notes 4, pp. 125–158, American Mathematical Society (1994)

  55. Rohrlich, D.E.: Modular curves, Hecke correspondences, and L-functions. In: Cornell, G., Silverman, J.H., Stevens, G. (eds.) Modular Forms and Fermat’s Last Theorem, pp. 41–100. Springer, Berlin (1997)

  56. Rubin, K.: Modularity of mod 5 representations. In: Cornell, G., Silverman, J.H., Stevens, G. (eds.) Modular Forms and Fermat’s Last Theorem, pp. 463–474. Springer, Berlin (1997)

  57. Serre, J.-P.: Properiétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  58. Serre, J.-P.: Lectures on the Mordell-Weil Theorem, Aspects of Mathematics 15, 3rd edn. Vieweg (1997)

  59. Serre, J.-P.: Topics in Galois Theory. 2nd edn. A K Peters/CRC Press 2007

  60. Siksek, S.: The modular approach to Diophantine equations. In: Cohen, H. (ed.) Number Theory, Volume II: Analytic and Modern Tools, GTM 240, pp. 495–527. Springer, Berlin (2007)

  61. Siksek, S.: Chabauty for symmetric powers of curves. Algebra Number Theory 3(2), 209–236 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  62. Siksek, S.: Explicit Chabauty over number fields. Algebra Number Theory 7(4), 765–793 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  63. Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves, GTM 151, Springer (1994)

  64. Skinner, C., Wiles, A.: Residually reducible representations and modular forms. Publications mathématiques de l’I.H.É.S. 89, 5–126 (1999)

  65. Skinner, C., Wiles, A.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. 10, 185–215 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  66. Stein, W.A.: Modular forms: a computational approach. Am. Math. Soc. (2007)

  67. Stoll, M.: Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith. 98, 245–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  68. Stoll, M.: Rational points on curves. J. Théorie Nombres Bordx. 23, 257–277 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sutherland, A.V.: A local-global principle for rational isogenies of prime degree. J. Théorie Nombres Bordx. 24(2), 475–485 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  70. Swinnerton-Dyer, H.P.F.: On \(\ell \)- adic representations and congruences for coefficients of modular forms. In: Kuyk, W., Serre, J.-P. (eds.): Modular Functions of One Variable III, Lecture Notes in Mathematics, vol. 350, pp. 1–55. Springer, Berlin (1973)

  71. Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98(2), 265–280 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  72. Taylor, R.: On icosahedral Artin representations II. Am. J. Math. 125, 549–566 (2003)

    Article  MATH  Google Scholar 

  73. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141(3), 553–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  74. Tunnell, J.: Artin’s conjecture for representations of octahedral type. Bull. AMS. 5, 173–175 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  75. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Mathe. 141(3), 443–551 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  76. Wiles, A.: On ordinary \(\lambda \)- adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for useful comments. It is a pleasure to express our sincere gratitude to a large number of colleagues for their help and advice during the course of writing this paper: Samuele Anni, Alex Bartel, Peter Bruin, Frank Calegari, Tommaso Centeleghe, John Cremona, Lassina Dembélé, Fred Diamond, Luis Dieulefait, Toby Gee, Ariel Pacetti, Richard Taylor and Damiano Testa. We would also like to thank Rajender Adibhatla, Shuvra Gupta, Derek Holt, David Loeffler and Panagiotis Tsaknias for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Siksek.

Additional information

The first-named author is supported through a Grant within the framework of the DFG Priority Programme 1489 Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory. The third-named author is supported by an EPSRC Leadership Fellowship EP/G007268/1, and EPSRC LMF: L-Functions and Modular Forms Programme Grant EP/K034383/1.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, N., Le Hung, B.V. & Siksek, S. Elliptic curves over real quadratic fields are modular. Invent. math. 201, 159–206 (2015). https://doi.org/10.1007/s00222-014-0550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0550-z

Mathematics Subject Classification

Navigation