Skip to main content
Log in

Universality of random matrices and local relaxation flow

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Consider the Dyson Brownian motion with parameter β, where β=1,2,4 corresponds to the eigenvalue flows for the eigenvalues of symmetric, hermitian and quaternion self-dual ensembles. For any β≥1, we prove that the relaxation time to local equilibrium for the Dyson Brownian motion is bounded above by N −ζ for some ζ>0. The proof is based on an estimate of the entropy flow of the Dyson Brownian motion w.r.t. a “pseudo equilibrium measure”. As an application of this estimate, we prove that the eigenvalue spacing statistics in the bulk of the spectrum for N×N symmetric Wigner ensemble is the same as that of the Gaussian Orthogonal Ensemble (GOE) in the limit N→∞. The assumptions on the probability distribution of the matrix elements of the Wigner ensemble are a subexponential decay and some minor restriction on the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Chapter  Google Scholar 

  2. Ben Arous, G., Péché, S.: Universality of local eigenvalue statistics for some sample covariance matrices. Commun. Pure Appl. Math. LVIII, 1–42 (2005)

    Google Scholar 

  3. Bleher, P., Its, A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brézin, E., Hikami, S.: Correlations of nearby levels induced by a random potential. Nucl. Phys. B 479, 697–706 (1996)

    Article  MATH  Google Scholar 

  6. Brézin, E., Hikami, S.: Spectral form factor in a random matrix theory. Phys. Rev. E 55, 4067–4083 (1997)

    Article  MathSciNet  Google Scholar 

  7. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52, 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)

    Article  MathSciNet  Google Scholar 

  11. Erdős, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 2010(3), 436–479 (2010)

    Google Scholar 

  12. Erdős, L., Ramirez, J., Schlein, B., Yau, H.-T.: Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab. 15(18), 526–604 (2010)

    MathSciNet  Google Scholar 

  13. Erdős, L., Péché, S., Ramírez, J., Schlein, B., Yau, H.-T.: Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63, 895–925 (2010)

    Google Scholar 

  14. Erdős, L., Ramírez, J., Schlein, B., Tao, T., Vu, V., Yau, H.-T.: Bulk universality for Wigner hermitian matrices with subexponential decay. Math. Res. Lett. 17(4), 667–674 (2010). arXiv:0906.4400

    MathSciNet  Google Scholar 

  15. Erdős, L., Schlein, B., Yau, H.-T., Yin, J.: The local relaxation flow approach to universality of the local statistics for random matrices. arXiv:0911.3687

  16. Erdős, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. arXiv:1001.3453

  17. Erdős, L., Yau, H.-T., Yin, J.: Universality for generalized Wigner matrices with Bernoulli distribution. arXiv:1003.3813

  18. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. arXiv:1007.4652

  19. Guionnet, A.: Large Random Matrices: Lectures on Macroscopic Asymptotics. École d’Et́é de Probabilités de Saint-Flour, vol. XXXVI. Springer, Berlin (2006)

    Google Scholar 

  20. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré, Probab. Stat. 41(2), 151–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hanson, D.L., Wright, F.T.: A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42(3), 1079–1083 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johansson, K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215(3), 683–705 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  24. Lu, S.-L., Yau, H.-T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys. 156, 399–433 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mehta, M.L.: Random Matrices. Academic Press, New York (1991)

    MATH  Google Scholar 

  26. Pastur, L., Shcherbina, M.: Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys. 130(2), 205–250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sinai, Y., Soshnikov, A.: A refinement of Wigner’s semicircle law in a neighborhood of the spectrum edge. Funct. Anal. Appl. 32(2), 114–131 (1998)

    Article  MathSciNet  Google Scholar 

  28. Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207(3), 697–733 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, T., Vu, V.: Random matrices: universality of the local eigenvalue statistics. arXiv:0906.0510

  30. Vu, V.: Spectral norm of random matrices. Combinatorica 27(6), 721–736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wright, F.T.: A bound on tail probabilities for quadratic forms in independent random variables whose distributions are not necessarily symmetric. Ann. Probab. 1(6), 1068–1070 (1973)

    Article  MATH  Google Scholar 

  32. Yau, H.T.: Relative entropy and the hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22, 63–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Erdős.

Additional information

L. Erdős was partially supported by SFB-TR 12 Grant of the German Research Council.

H.-T. Yau was partially supported by NSF grants DMS-0757425, 0804279.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, L., Schlein, B. & Yau, HT. Universality of random matrices and local relaxation flow. Invent. math. 185, 75–119 (2011). https://doi.org/10.1007/s00222-010-0302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0302-7

Mathematics Subject Classification (2000)

Navigation