Skip to main content
Log in

Effect of noise on front propagation in reaction-diffusion equations of KPP type

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider reaction-diffusion equations of KPP type in one spatial dimension, perturbed by a Fisher-Wright white noise, under the assumption of uniqueness in distribution. Examples include the randomly perturbed Fisher-KPP equations

$$\partial_tu=\partial_x^2u+u(1-u)+\epsilon\sqrt{u(1-u)}\dot{W},$$

and

$$\partial_tu=\partial_x^2u+u(1-u)+\epsilon\sqrt{u}\dot{W},$$

where \(\dot{W}=\dot{W}(t,x)\) is a space-time white noise. We prove the Brunet-Derrida conjecture that the speed of traveling fronts for small ε is

$$2-\pi^2|{\log}\,\epsilon^2|^{-2}+O((\log|{\log}\,\epsilon|)|{\log}\,\epsilon|^{-3}).$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benguria, R.D., Depassier, M.C., Loss, M.: Validity of the Brunet-Derrida formula for the speed of pulled fronts with a cutoff. arXiv:0706.3671

  2. Bérard, J.: An example of Brunet-Derrida behavior for a branching-selection particle system on ℤ. arXiv:0810.5567

  3. Bérard, J., Gouéré, J.B.: Brunet-Derrida behavior of branching-selection particle systems on the line. arXiv:0811.2782

  4. Bérard, J., Gouéré, J.B.: Survival probability of the branching random walk killed below a linear boundary. arXiv:0911.3755

  5. Berestycki, J., Berestycki, N., Schweinsberg, J.: The genealogy of branching Brownian motion with absorption. arXiv:1001.2337

  6. Bramson, M.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531–581 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bramson, M.: Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44, 285 (1983). iv+190

    MathSciNet  Google Scholar 

  8. Bramson, M., Durrett, R.: A simple proof of the stability criterion of Gray and Griffeath. Probab. Theory Relat. Fields 80(2), 293–298 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brunet, E., Derrida, B.: Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3), Part A 56(3), 2597–2604 (1997)

    Article  MathSciNet  Google Scholar 

  10. Brunet, E., Derrida, B.: Effect of microscopic noise on front propagation. J. Stat. Phys. 103(1–2), 269–282 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brunet, E., Derrida, B., Mueller, A.H., Munier, S.: A phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. Phys. Rev. E 73, 056126 (2006)

    Google Scholar 

  12. Conlon, J., Doering, C.: On travelling waves for the stochastic Fisher-Kolmogorov-Petrovsky-Piscunov equation. J. Stat. Phys. 120(3–4), 421–477 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dumortier, F., Popovic, N., Kaper, T.: The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off. Nonlinearity 20(4), 855–877 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Durrett, R.: Oriented percolation in two dimensions. Ann. Probab. 12, 999–1040 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  16. Galves, A., Presutti, E.: Edge fluctuations for the one-dimensional supercritical contact process. Ann. Probab. 15(3), 1131–1145 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gantert, N., Hu, Y., Shi, Z.: Asymptotics for the survival probability in a supercritical branching random walk (2008). arXiv:0811.0262

  18. Horridge, P., Tribe, R.: On stationary distributions for the KPP equation with branching noise. Ann. Inst. H. Poincar Probab. Stat. 40(6), 759–770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolmogorov, A., Petrovsky, I., Piskunov, N.: Étude de l’Equation de la diffusion avec croissance de la quantité de mati‘ere et son application ‘a un probl‘eme biologique. Mosc. Univ., Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  20. Kessler, Z., Ner, D.A., Sander, L.M.: Front propagation:precursors, cutoffs and structural stability. Phys. Rev. E 58, 107–114 (1998)

    Article  Google Scholar 

  21. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    MATH  Google Scholar 

  22. McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28(3), 323–331 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. McKean, H.P.: A Correction to: “Application of Brownian motion to the equation of Kolmogorov-Petrovski-Piskunov [sic]”. Commun. Pure Appl. Math. 29(5), 553–554 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mytnik, L., Perkins, E.: Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case. To appear in Probab. Theory Relat. Fields

  25. Mytnik, L., Perkins, E., Sturm, A.: On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34, 1910–1959 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mueller, C., Perkins, E.: The compact support property for solutions to the heat equation with noise. Probab. Theory Relat. Fields 93(3), 325–358 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mueller, C., Sowers, R.: Random traveling waves for the KPP equation with noise. J. Funct. Anal. 128, 439–498 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mueller, C., Tribe, R.: Stochastic p.d.e.’s arising from the long range contact and long range voter processes. Probab. Theory Relat. Fields 102(4), 519–546 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Panja, D.: Phys. Rev. E 68, 065202(R) (2003)

    Article  Google Scholar 

  30. Panja, D.: Phys. Rep. 393, 87 (2004)

    Article  Google Scholar 

  31. Pardoux, E.: Stochastic partial differential equations, a review. Bull. Sci. Math. 117(1), 29–47 (1993)

    MATH  MathSciNet  Google Scholar 

  32. Pechenik, L., Levine, H.: Interfacial velocity corrections due to multiplicative noise. Phys. Rev. E 59, 3893–3900 (1999)

    Article  Google Scholar 

  33. Shiga, T.: Stepping stone models in population genetics and population dynamics. In: Albeverio, S., et al. (eds.) Stochastic Processes in Physics and Engineering, pp. 345–355. Reidel, Dordrecht (1988)

    Google Scholar 

  34. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    Article  MATH  Google Scholar 

  35. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d’été de probabilités de Saint-Flour, XIV-1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Quastel.

Additional information

C. Mueller was supported by an NSF grant.

L. Mytnik was supported in part by the Israel Science Foundation (grant No. 1162/06).

J. Quastel was supported by NSERC, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, C., Mytnik, L. & Quastel, J. Effect of noise on front propagation in reaction-diffusion equations of KPP type. Invent. math. 184, 405–453 (2011). https://doi.org/10.1007/s00222-010-0292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0292-5

Keywords

Mathematics Subject Classification

Navigation